-
Riddle Padilla posted an update 6 months, 3 weeks ago
A simple protocol to overcome the explosive pentafluoroethylation of carbonyl compounds by HFC-125 is described. The use of potassium (K) bases with triglyme or tetraglyme as a solvent safely yields the pentafluoroethylation products in good to high yields. The experimental results suggest that an encapsulation of the K cation by glymes as K(glyme)2 inhibits the contact between the K cation and the reactive anionic pentafluoroethyl counterion, preventing their transformation into KF and explosive tetrafluoroethylene (TFE). The generation of sterically demanding + and + is an effective way as an unstable pentafluoroethyl anion reservoir.Novel boron complexes bearing pyrrole and π-expanded pyridine structures, such as quinoline, isoquinoline, and phenanthridine, were prepared. These compounds showed the fluorescence emission characters in both solution and solid state. Particularly, several complexes in solution exhibited high fluorescence quantum yield with Stokes shift values being four to five times larger than that of boron dipyrromethenes (BODIPYs). The present paper describes the optical properties of these novel boron complexes as well as their halogenated derivatives from the results of both experimental and computational studies.Tandem mass spectrometry of electrospray ionized multiply charged peptide ions is commonly used to identify the sequence of peptide(s) and infer the identity of source protein(s). Doubly protonated peptide ions are consistently the most efficiently sequenced ions following collision-induced dissociation of peptides generated by tryptic digestion. While the broad characteristics of longer (N ≥ 8 residue) doubly protonated peptides have been investigated, there is comparatively little data on shorter systems where charge repulsion should exhibit the greatest influence on the dissociation chemistry. To address this gap and further understand the chemistry underlying collisional-dissociation of doubly charged tryptic peptides, two series of analytes (2+ and 2+, x = 2-5) were investigated experimentally and with theory. We find distinct differences in the preference of bond cleavage sites for these peptides as a function of size and to a lesser extent composition. Density functional calculations at two levels of theory predict that the threshold relative energies required for bond cleavages at the same site for peptides of different size are quite similar (for example, b2-yN-2). In isolation, this finding is inconsistent with experiment. However, the predicted extent of entropy change of these reactions is size dependent. Subsequent RRKM rate constant calculations provide a far clearer picture of the kinetics of the competing bond cleavage reactions enabling rationalization of experimental findings. The M06-2X data were substantially more consistent with experiment than were the B3LYP data.We have developed an unprecedented approach for the synthesis of transient 1-phosphafulvenes through three component reactions of phospholes. The generation of 1-phosphafulvenes was demonstrated by in situ cycloaddition with 2H-phospholes and self-dimerization. The and reaction pathway could be modulated by the starting ketones and aldehydes. The construction of 1-phosphafulvenes is illustrated by a proposed mechanism combining nucleophilic addition of phospholide to the iminium or isomerized azomethine ylide and a -shift of phosphole.Synthetic copolymer sequences remain challenging to control, and there are features of even simple one-pot, solution-based copolymerizations that are not yet fully understood. In previous simulations on step-growth copolymerizations in solution, we demonstrated that modest variations in the attractions between type A and B monomers could significantly influence copolymer sequence through an emergent aggregation and phase separation initiated by the lengthening of nascent oligomers. Here we investigate how one aspect of a copolymer’s geometry-its flexibility-can modulate those effects. Our simulations show the onset of strand alignment within the polymerization-induced aggregates as chain stiffness increases and demonstrate that this alignment can influence the resulting copolymer sequences. For less flexible copolymers, with persistence lengths ≥10 monomers, modest nonbonded attractions of ∼kBT between monomers of the same type yield A and B blocks of a characteristic length and result in a polydispersity index that grows rapidly, peaks, and then diminishes as the reaction proceeds. These results demonstrate that for copolymer systems with modest variations in intermonomer attractions and physically realistic flexibilities a nascent copolymer’s persistence length can influence its own sequence.The first palladium-catalyzed direct arylation of 2-pyridylmethyl silanes with aryl bromides to generate a diverse array of aryl(2-pyridyl)-methyl silane derivatives has been developed. This protocol facilitates access to various kinds of heterocycle-containing silanes in good to excellent yields (40 examples, 66-97% yield) with good functional group tolerance. The scalability of this transformation is demonstrated.Adult reproductive diapause is an adaptive strategy under adverse environments for insects and other arthropod species, including bumblebees, which enables queens to survive through a harsh winter and then build new colonies in the following spring. Little research has been done on the molecular regulatory mechanism of reproductive diapause in Bombus terrestris, which is an important pollinator of wild plants and crops. Our previous research identified the conditions that induced reproductive diapause during the year-round mass rearing of B. terrestris. Here, we performed combined transcriptomics and proteomics analyses of reproductive diapause in B. terrestris during and after diapause at three different ecophysiological phases, diapause, postdiapause, and founder postdiapause. MYF-01-37 The analyses showed that differentially expressed proteins/genes acted in the citrate cycle, insect hormone biosynthesis, insulin and mTOR signaling pathway. To further understand the mechanisms that regulated the reproductive diapause, genes involved in the regulation of JH synthesis, insulin/TOR signal pathway were determined.