• McFarland Wind posted an update 6 months ago

    Docking technology for autonomous underwater vehicles (AUVs) involves energy supply, data exchange and navigation, and plays an important role to extend the endurance of the AUVs. The navigation method used in the transition between AUV homing and docking influences subsequent tasks. How to improve the accuracy of the navigation in this stage is important. However, when using ultra-short baseline (USBL), outliers and slow localization updating rates could possibly cause localization errors. Optical navigation methods using underwater lights and cameras are easily affected by the ambient light. All these may reduce the rate of successful docking. In this paper, research on an improved localization method based on multi-sensor information fusion is carried out. To improve the localization performance of AUVs under motion mutation and light variation conditions, an improved underwater simultaneous localization and mapping algorithm based on ORB features (IU-ORBSALM) is proposed. A nonlinear optimization method is proposed to optimize the scale of monocular visual odometry in IU-ORBSLAM and the AUV pose. Localization tests and five docking missions are executed in a swimming pool. see more The localization results indicate that the localization accuracy and update rate are both improved. The 100% successful docking rate achieved verifies the feasibility of the proposed localization method.The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.This study investigated major healthy and sustainable dietary patterns in the Dutch population. Two 24-hour dietary recalls were collected in 2078 participants aged 19-79 years in the Dutch National Food Consumption Survey 2012-2016. Dietary patterns were identified using reduced rank regression. Predictor variables were food groups and response variables were Dutch Healthy Diet index 2015 (DHD15-index) score, greenhouse gas emissions (GHGE), and blue water use. Three patterns were discovered, including a “high fruit and vegetable dietary pattern”, a “low meat dietary pattern”, and a “high dairy, low fruit juices dietary pattern”. Diets in the highest quartile of these patterns had higher DHD15-index score than the average population. However, diets of the “high fruit and vegetable dietary pattern” were associated with higher dietary GHGE (14%) and blue water use (69.2%) compared to the average population. Diets of the “low meat dietary pattern” were associated with lower GHGE (19.6%) and higher blue water use (7.7%). Concluding, the “low meat dietary pattern” was the most healthy and sustainable dietary pattern in this population. The addition of blue water use as an environmental impact indicator shows the difficulty of finding existing dietary patterns that have low environmental impact in all determinants.Kinematic analysis of the cycling position is a determining factor in injury prevention and optimal performance. Fatigue caused by high volume training can alter the kinematics of the lower body and spinal structures, thus increasing the risk of chronic injury. However, very few studies have established relationships between fatigue and postural change, being these in 2D analysis or incremental intensity protocols. Therefore, this study aimed to perform a 3D kinematic analysis of pedaling technique in a stable power fatigue protocol 23 amateur cyclists (28.3 ± 8.4 years) participated in this study. For this purpose, 3D kinematics in hip, knee, ankle, and lumbar joints, and thorax and pelvis were collected at three separate times during the protocol. Kinematic differences at the beginning, middle, and end of the protocol were analyzed for all joints using one-dimensional statistical parametric mapping. Significant differences (p less then 0.05) were found in all the joints studied, but not all of them occur in the same planes or the same phase of the cycle. Some of the changes produced, such as greater lumbar and thoracic flexion, greater thoracic and pelvic tilt, or greater hip adduction, could lead to chronic knee and lumbar injuries. Therefore, bike fitting protocols should be carried out in fatigue situations to detect risk factor situations.The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account