-
Bager Rooney posted an update 6 months, 2 weeks ago
To demonstrate the great prospects for further combining hyperspectral SIM with various spectral analysis methods, we also perform spectral unmixing of the hyperspectral SIM result while imaging the spectrally overlapped sample.The central challenge in automated synthesis planning is to be able to generate and predict outcomes of a diverse set of chemical reactions. In particular, in many cases, the most likely synthesis pathway cannot be applied due to additional constraints, which requires proposing alternative chemical reactions. With this in mind, we present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder-decoder neural model. MEGAN is inspired by models that express a chemical reaction as a sequence of graph edits, akin to the arrow pushing formalism. We extend this model to retrosynthesis prediction (predicting substrates given the product of a chemical reaction) and scale it up to large data sets. We argue that representing the reaction as a sequence of edits enables MEGAN to efficiently explore the space of plausible chemical reactions, maintaining the flexibility of modeling the reaction in an end-to-end fashion and achieving state-of-the-art accuracy in standard benchmarks. Code and trained models are made available online at https//github.com/molecule-one/megan.The past 20 years have seen an extensive implementation of nickel in homogeneous catalysis through the development of unique reactivity not easily achievable by using noble transition metals. Many catalytic cycles propose Ni(I) complexes as potential reactive intermediates, yet the scarcity of nickel(I) precursors and the lack of a general, non-ligand-specific protocol for their synthesis have hampered progress in this field of research. This has in turn also limited the access to novel, well-defined Ni(I) species for the development of new catalytic reactions. Herein, we report a simple, general route to access a wide variety of Ni(I)-phenolate complexes via an unusual example of an olefinic Ni(I) complex, (COD = 1,5-cyclooctadiene, OPh* = O(tBu)3C6H2). This route has proven to be highly efficient for several coordination numbers and ligand classes enabling access to the following complexes (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), (dcype = 1,2-bis(dicyclohexylphosphino)ethane), (dppe = 1,2-bis(diphenylphosphino)ethane), and (terpy = 2,2’6′,2″-terpyridine). Moreover, reacting with trimethylsilyl triflate has led to the isolation of a unique example of a cationic binuclear Ni(I)-arene complex. All these complexes have been characterized by single-crystal X-ray, DFT, and EPR analyses, thus providing crucial experimental and theoretical information about their coordination environment and confirming a d9 electronic structure for all complexes involved. Overall, this new synthetic approach offers exciting opportunities for the discovery of new stoichiometric and catalytic reactivity as well as the mechanistic elucidation of Ni-based catalytic cycles.The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. learn more We propose a model to explain this based on charge transfer over the solid/liquid interface.PEP27, a 27-amino acid (aa) peptide secreted by Streptococcus pneumoniae, is an autolytic peptide that functions as a major virulence factor. To develop a clinically applicable antimicrobial peptide (AMP), we designed PEP27 analogs with Trp substitutions to enhance its antimicrobial activity compared to that of PEP27. Particularly, PEP27-2 showed strong antimicrobial activity against a wide variety of bacteria, including multidrug-resistant (MDR) bacteria. It was found that the antimicrobial activity of PEP27-2 was increased by substituting Trp for the aa at the middle position of PEP27. We found that PEP27-2 acts as an effective cell-penetrating peptide in bacterial and mammalian cells. Here, we proved that subcutaneous infection with MDR Staphylococcus aureus induced skin lesions such as skeletal muscle damage, deep inflammation, and necrosis of the overlaying dermis in mice. Combination treatment with antibiotics revealed synergistic effects, remarkably reducing abscess size and improving the bacteria removal rate from the infection site. Moreover, PEP27-2-antibiotic combination treatment reduced inflammation, lowering levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible NO synthase (iNOS), and cyclooxygenase (COX-2) in skin abscess tissue. The results suggest that the PEP27-2 peptide is a promising therapeutic option for combating MDR bacterial strains by enhancing antibiotic penetration and protecting against MDR bacteria.Biased agonists, which selectively stimulate certain signaling pathways controlled by a G protein-coupled receptor (GPCR), hold great promise as drugs that maximize efficacy while minimizing dangerous side effects. Biased agonists of the μ-opioid receptor (μOR) are of particular interest as a means to achieve analgesia through G protein signaling without dose-limiting side effects such as respiratory depression and constipation. Rational structure-based design of biased agonists remains highly challenging, however, because the ligand-mediated interactions that are key to activation of each signaling pathway remain unclear. We identify several compounds for which the R- and S-enantiomers have distinct bias profiles at the μOR. These compounds serve as excellent comparative tools to study bias because the identical physicochemical properties of enantiomer pairs ensure that differences in bias profiles are due to differences in interactions with the μOR binding pocket. Atomic-level simulations of compounds at μOR indicate that R- and S-enantiomers adopt different poses that form distinct interactions with the binding pocket.