-
Sampson Voigt posted an update 6 months ago
e., body and chelae shapes) and trophic divergence (i.e., reliance on littoral carbon) among individuals from littoral and pelagic habitats, highlighting the existence of resource polymorphism in invasive populations. There was no genetic differentiation between individuals from the two habitats, implying that this resource polymorphism was stable (i.e., high gene flow between individuals). Finally, we demonstrated that a divergent adaptive process was responsible for the morphological divergence in body and chela shapes between habitats while difference in littoral reliance neutrally evolved under genetic drift. These findings demonstrated that invasive P. clarkii can display strong within-population phenotypic variability in recent populations, and this could lead to contrasting ecological impacts between littoral and pelagic individuals. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Species occupying habitats subjected to frequent natural and/or anthropogenic changes are a challenge for conservation management. We studied one such species, Viola uliginosa, an endangered perennial wetland species typically inhabiting sporadically flooded meadows alongside rivers/lakes. In order to estimate genomic diversity, population structure, and history, we sampled five sites in Finland, three in Estonia, and one each in Slovenia, Belarus, and Poland using genomic SNP data with double-digest restriction site-associated DNA sequencing (ddRAD-seq). We found monophyletic populations, high levels of inbreeding (mean population F SNP = 0.407-0.945), low effective population sizes (N e = 0.8-50.9), indications of past demographic expansion, and rare long-distance dispersal. Our results are important in implementing conservation strategies for V. uliginosa, which should include founding of seed banks, ex situ cultivations, and reintroductions with individuals of proper origin, combined with continuous population monitoring and habitat management. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Failed oak regeneration is widely reported in temperate forests and has been linked in part to changed disturbance regimes and land-use. Tanespimycin We investigated if the North American fire-oak hypothesis could be applicable to temperate European oaks (Quercus robur, Quercus petraea) using a replicated field experiment with contrasting canopy openness, protection against ungulate browsing (fencing/no fencing), and low-intensity surface fire (burn/no burn). Survival, relative height growth (RGRH), browsing damage on naturally regenerated oaks (≤300 cm tall), and changes in competing woody vegetation were monitored over three years. Greater light availability in canopy gaps increased oak RGRH (p = .034) and tended to increase survival (p = .092). There was also a trend that protection from browsing positively affected RGRH (p = .058) and survival (p = .059). Burning reduced survival (p less then .001), nonetheless, survival rates were relatively high across treatment combinations at the end of the experiment (54%-92%). response of competitors and implications for biodiversity conservation is needed. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Ecological requirements and environmental conditions can influence diversification across temporal and spatial scales. Understanding the role of ecological niche evolution under phylogenetic contexts provides insights on speciation mechanisms and possible responses to future climatic change. Large-scale phyloclimatic studies on the megadiverse Neotropics, where biomes with contrasting vegetation types occur in narrow contact, are rare. We integrate ecological and biogeographic data with phylogenetic comparative methods, to investigate the relative roles of biogeographic events and niche divergence and conservatism on the diversification of the lizard genus Kentropyx Spix, 1825 (Squamata Teiidae), distributed in South American rainforests and savannas. Using five molecular markers, we estimated a dated species tree, which recovered three clades coincident with previously proposed species groups diverging during the mid-Miocene. Biogeography reconstruction indicates a role of successive dispersal events from an ancestral range in the Brazilian Shield and western Amazonia. Ancestral reconstruction of climatic tolerances and niche overlap metrics indicates a trend of conservatism during the diversification of groups from the Amazon Basin and Guiana Shield, and a strong signal of niche divergence in the Brazilian Shield savannas. Our results suggest that climatic-driven divergence at dynamic forest-savanna borders might have resulted in adaptation to new environmental niches, promoting habitat shifts and shaping speciation patterns of Neotropical lizards. Dispersal and ecological divergence could have a more important role in Neotropical diversification than previously thought. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Understanding the challenges faced by organisms moving within their environment is essential to comprehending the evolution of locomotor morphology and habitat use. Geckos have developed adhesive toe pads that enable exploitation of a wide range of microhabitats. These toe pads, and their adhesive mechanisms, have typically been studied using a range of artificial substrates, usually significantly smoother than those available in nature. Although these studies have been fundamental in understanding the mechanisms of attachment in geckos, it is unclear whether gecko attachment simply gradually declines with increased roughness as some researchers have suggested, or whether the interaction between the gekkotan adhesive system and surface roughness produces nonlinear relationships. To understand ecological challenges faced in their natural habitats, it is essential to use test surfaces that are more like surfaces used by geckos in nature. We tested gecko shear force (i.e., frictional force) generation as a measure of clinging performance on three artificial substrates. We selected substrates that exhibit microtopographies with peak-to-valley heights similar to those of substrates used in nature, to investigate performance on a range of smooth surfaces (glass), and fine-grained (fine sandpaper) to rough (coarse sandpaper). We found that shear force did not decline monotonically with roughness, but varied nonlinearly among substrates. Clinging performance was greater on glass and coarse sandpaper than on fine sandpaper, and clinging performance was not significantly different between glass and coarse sandpaper. Our results demonstrate that performance on different substrates varies, probably depending on the underlying mechanisms of the adhesive apparatus in geckos. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.