• Anker Hampton posted an update 6 months, 3 weeks ago

    lactis MG1363. This is the first report of the use of a food grade plasmid that confers the ability to efficiently catalyze the deglycosylation of lignans, isoflavonoids, flavones, and flavanones. The recombinant bacteria of this study would be of value for the development of fermented vegetal foods enriched in bioavailable forms of lignans and flavonoids.Variable domains of heavy chains of camelid heavy-chain antibodies (VHHs) are known as nanobodies. Nanobodies are approximately 15 kDa in size with high affinity to their antigens. They can be easily manipulated and produced in microorganisms. In this study, an alpaca was immunized with purified green fluorescence protein (GFP) and a VHH library from lymphocytes of the immunized alpaca was constructed with a capacity of 6.7 × 107. The library was biopanned against GFP by phage display technique and four unique DNA sequences coding for anti-GFP nanobodies were identified by enzyme-linked immunosorbent assay, named a12, e6, d5, and b9. The four DNA sequences were then cloned into pADL-10b-6×His or pBAD24-Flag-6×His for expression in bacteria. Ibuprofensodium Purified A12, E6, D5, and B9 were demonstrated to bind GFP specifically both in vitro by enzyme-linked immunosorbent assay and native-PAGE analysis and in vivo by immunofluorescence and immunoprecipitation. Taken together, our results demonstrate that anti-GFP nanobodies are successfully selected from the immune library, are produced in bacteria, and are available for basic research.Key Points• Four different GFP binders were successfully obtained from an immune VHH library.• The four GFP binders were successfully purified from bacteria. • Purified GFP binders can bind GFP both in vitro and in vivo and are ready for use in basic research.In the last few decades, there has been a rapid increase in the discovery of drugs from natural products, particularly secondary metabolites. Various efforts have been undertaken to enhance and optimize the production system of these secondary metabolites to meet the increasing global market demand. Recently, metabolic engineering has been used for the heterologous synthesis of secondary metabolites in the engineered yeast strains. Here, we highlight the recent advancements in the production of pharmaceutically important secondary metabolites in metabolically engineered yeast, such as Saccharomyces cerevisiae and Pichia pastoris. Furthermore, we also emphasize the important application of synthetic biology methods that are supported by state-of-the-art post-genomic tools to improve the efficiency and success rate of yeast metabolic engineering for the production of natural drugs. Metabolic engineering using yeast as a microbial host factory to produce pharmaceutically useful secondary metabolites is a very promising strategy, which can be used to support the industrial production system. KEY POINTS •Next-generation sequencing application for genome mining of secondary metabolites •Various synthetic biology tools for yeast metabolic engineering construction •Examples of successfully produced medicinal secondary metabolites in engineered yeast.The assessment of water quality is critical to implement preventive and emergency interventions aimed to limit/avoid environmental contamination and human exposure to toxic compounds. While established high-resolution techniques allow quantitative and qualitative determination of contaminants, their widespread application is not feasible due to cost, time, and need for trained personnel. In this context, the development of easy-to-implement approaches for preliminary detection of contaminants is of the utmost importance. Herein, a portable self-powered microbial electrochemical sensor enabling online monitoring of Cr(VI) is reported. The biosensor employs a bio-inspired redox mediating system to allow extracellular electron transfer between a bacterial isolate from chromium-contaminated environments and the electrode, providing a clear response to Cr(VI) presence. The biosensor shows good linearity (R2 = 0.983) and a limit of detection of 2.4 mg L-1 Cr(VI), with a sensitivity of 0.31 ± 0.02 μA cm-2 mgCr(VI)-1 L. The presented microbial bioanode architecture enhanced biosensor performance thanks to the improved “electrical wiring” between biological entities and the abiotic electrode surface. This approach could be easily implemented in engineered electrode surfaces, such as paper-based multi-anodes that maximize bacterial colonization, further improving biosensor response. Graphical abstract.The environmental concentration of tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) and tetrabromobisphenol A mono(hydroxyethyl) ether (TBBPA-MHEE), as some of the main derivatives and byproducts of tetrabromobisphenol A (TBBPA), are obscure due to lacking available analytical methods. In the present study, a multiplexed competitive chemiluminescent imaging immunoassay (CLIIA) based on specific monoclonal antibody respectively against TBBPA-MHEE and TBBPA-DHEE has been developed for the simultaneous detection of the two targets. To improve the sensitivity of immunoassay, Au nanoparticles (AuNPs) were utilized as solid support for loading horseradish peroxidase, labeled to obtain the multi-enzyme particles. Under the optimized conditions, the limits of detection (LODs) for TBBPA-MHEE and TBBPA-DHEE were 1.85 ng/mL and 2.05 ng/mL, respectively. After estimating its accuracy and precision, the established method was applied for investigation of the contaminants at the inner rivers in Zhenjiang, Jiangsu Province. Our results indicated that no TBBPA-MHEE was found in all 11 water samples and two samples of TBBPA-DHEE were detected up to 6.34 ng/mL, possibly ascribed to the dense population and slow flow rate around the sampling site. Graphical abstract.Lercanidipine, a third-generation dihydropyridine calcium L-type channel blocker, redox behavior at different carbon electrode materials, in a wide pH range, using cyclic, square-wave, and differential pulse voltammetry, was studied. A comparison was made between unmodified glassy carbon electrode (GCE) and boron-doped diamond electrode (BDDE), and GCE and BDDE modified with a carbon black (CB) nanoparticle embedded within a dihexadecylphosphate (DHP) nanostructured film (CB-DHP/GCE and CB-DHP/BDDE). Lercanidipine oxidation, for 3.4  9.5, both oxidation processes are pH-independent and a pKa = 9.40 was determined. Lercanidipine reduction at pH = 7.0 is an irreversible process, and the lercanidipine reduction products are electroactive and follow a reversible electron transfer reaction. Lercanidipine electroanalytical determination, at a nanostructured GCE modified with a CB-DHP film (CB-DHP/GCE), with no need for N2 purging, with a detection limit of 0.058 μM (3.58 × 10-5 g L-1) and a quantification limit of 0.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account