-
Owen Gravgaard posted an update 6 months ago
Introduction Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by a deficiency or absence of alpha-galactosidase A (α-GAL A) enzyme, where stroke can be a serious complication. The aim of this study is to determine the feasibility of centralized screening for FD, among young stroke adults registered in the national Australian Stroke Clinical Registry (AuSCR). Methods The study was conducted in young (age 18 – 55 years) survivors of acute stroke of unknown etiology registered in AuSCR at hospitals in Queensland, Tasmania, New South Wales, and Victoria during 2014 – 2015; and who, at the 3-month outcome assessment, agreed to be re-contacted for future research. Descriptive analyses of case identification from responses and specific enzyme and DNA sequencing analyses were conducted for α-galactosidase A (α-GLA) from dried blood spot (DBS) testing. Results Of 326 AuSCR-identified patients invited to participate, 58 (18%) provided consent but six were subsequently unable to provide a blood sample and two later withdrew consent to use their data. Among the remaining 50 participants (median age 53 years ; 47% female), 67% had experienced an acute ischemic stroke. All males (n = 27) had an initial screen for α-GLA enzyme activity of whom seven with low enzyme levels had normal secondary α-GLA gene analysis. All females (n = 23) had genetic analysis, with one shown to have a pathogenic c.352C>T p.(Arg118Cys) missense mutation of the α-GLA gene for FD. Conclusions These findings provide logistical data for embedding a process of automated central stroke registry screening for an additional case-finding tool in FD.Background Cobalamin C (cblC) has a fundamental role in both central and peripheral nervous system function at any age. Neurologic manifestations may be the earliest and often the only manifestation of hereditary or acquired cblC defect. Peripheral neuropathy remains a classical but underdiagnosed complication of cblC defect, especially in late-onset cblC disease caused by mutations in the methylmalonic aciduria type C and homocysteinemia (MMACHC) gene. So the clinical, electrophysiological, and pathological characteristics of late-onset cblC disease are not well-known. Methods A retrospective study of patients with late-onset cblC disease was conducted at our hospital on a 3-year period. The neuropathy was confirmed by the nerve conduction study. Sural biopsies were performed in 2 patients. Results Eight patients were identified, with a mean onset age of 16.25 ± 6.07 years. All patients had methylmalonic aciduria, homocysteinemia, compound heterozygous MMACHC gene mutations were detected in all patients, and 7/8 patients with c.482G>A mutation. One patient concomitant with homozygote c.665C>T mutation in 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. All patients showed limb weakness and cognitive impairment. Five patients had possible sensorimotor axonal polyneuropathy predominantly in the distal lower limbs. Sural biopsies showed loss of myelinated and unmyelinated fibers. Electro microscopy revealed crystalline-like inclusions bodies in Schwann cells and axonal degeneration. Conclusion Late-onset cblC disease had possible heterogeneous group of distal axonal neuropathy. c.482G>A mutation is a hot spot mutation in late-onset cblC disease.Introduction We aimed to evaluate if prior oral anticoagulation (OAC) and its type determines a greater risk of symptomatic hemorrhagic transformation in patients with acute ischemic stroke (AIS) subjected to mechanical thrombectomy. Materials and Methods Consecutive patients with AIS included in the prospective reperfusion registry NORDICTUS, a network of tertiary stroke centers in Northern Spain, from January 2017 to December 2019 were included. Prior use of oral anticoagulants, baseline variables, and international normalized ratio (INR) on admission were recorded. Symptomatic intracranial hemorrhage (sICH) was the primary outcome measure. Secondary outcome was the relation between INR and sICH, and we evaluated mortality and functional outcome at 3 months by modified Rankin scale. We compared patients with and without previous OAC and also considered the type of oral anticoagulants. selleck screening library Results About 1.455 AIS patients were included, of whom 274 (19%) were on OAC, 193 (70%) on vitamin K antagonists (VKA), and 81 (30%) on direct oral anticoagulants (DOACs). Anticoagulated patients were older and had more comorbidities. Eighty-one (5.6%) developed sICH, which was more frequent in the VKA group, but not in DOAC group. OAC with VKA emerged as a predictor of sICH in a multivariate regression model (OR, 1.89 , p = 0.04) and was not related to INR level on admission. Prior VKA use was not associated with worse outcome in the multivariate regression model nor with mortality at 3 months. Conclusions OAC with VKA, but not with DOACs, was an independent predictor of sICH after mechanical thrombectomy. This excess risk was associated neither with INR value by the time thrombectomy was performed, nor with a worse functional outcome or mortality at 3 months.Despite our understanding of the impact of noise-induced damage to the auditory system, much less is known about the impact of noise exposure on the vestibular system. In this article, we review the anatomical, physiological, and functional evidence for noise-induced damage to peripheral and central vestibular structures. Morphological studies in several animal models have demonstrated cellular damage throughout the peripheral vestibular system and particularly in the otolith organs; however, there is a paucity of data on the effect of noise exposure on human vestibular end organs. Physiological studies have corroborated morphological studies by demonstrating disruption across vestibular pathways with otolith-mediated pathways impacted more than semicircular canal-mediated pathways. Similar to the temporary threshold shifts observed in the auditory system, physiological studies in animals have suggested a capacity for recovery following noise-induced vestibular damage. Human studies have demonstrated that diminished sacculo-collic responses are related to the severity of noise-induced hearing loss, and dose-dependent vestibular deficits following noise exposure have been corroborated in animal models.