• Rush Li posted an update 6 months, 1 week ago

    This scenario will have strong consequences on decoherence of ET under physiological conditions due to relative isolation from thermal equilibration of the ET mechanism.We show that, as in Hartree-Fock theory, the orbitals for excited state mean field theory can be optimized via a self-consistent one-electron equation in which electron-electron repulsion is accounted for through mean field operators. In addition to showing that this excited state ansatz is sufficiently close to a mean field product state to admit a one-electron formulation, this approach brings the orbital optimization speed to within roughly a factor of two of ground state mean field theory. The approach parallels Hartree Fock theory in multiple ways, including the presence of a commutator condition, a one-electron mean-field working equation, and acceleration via direct inversion in the iterative subspace. When combined with a configuration interaction singles Davidson solver for the excitation coefficients, the self-consistent field formulation dramatically reduces the cost of the theory compared to previous approaches based on quasi-Newton descent.Lithium ion batteries often contain transition metal oxides such as LixMn2O4 (0 ≤ x ≤ 2). Depending on the Li content, different ratios of MnIII to MnIV ions are present. In combination with electron hopping, the Jahn-Teller distortions of the MnIIIO6 octahedra can give rise to complex phenomena such as structural transitions and conductance. While for small model systems oxidation and spin states can be determined using density functional theory (DFT), the investigation of dynamical phenomena by DFT is too demanding. Previously, we have shown that a high-dimensional neural network potential can extend molecular dynamics (MD) simulations of LixMn2O4 to nanosecond time scales, but these simulations did not provide information about the electronic structure. Here, we extend the use of neural networks to the prediction of atomic oxidation and spin states. The resulting high-dimensional neural network is able to predict the spins of the Mn ions with an error of only 0.03 ℏ. We find that the Mn eg electrons are correctly conserved and that the number of Jahn-Teller distorted MnIIIO6 octahedra is predicted precisely for different Li loadings. A charge ordering transition is observed between 280 K and 300 K, which matches resistivity measurements. Moreover, the activation energy of the electron hopping conduction above the phase transition is predicted to be 0.18 eV, deviating only 0.02 eV from experiment. This work demonstrates that machine learning is able to provide an accurate representation of both the geometric and the electronic structure dynamics of LixMn2O4 on time and length scales that are not accessible by ab initio MD.Here, we perform a Surface-Enhanced Fluorescence (SEF) intensity and lifetime imaging study on linear arrays of silver half-shells (LASHSs), a class of polarization-sensitive hybrid colloidal photonic-plasmonic crystal unexplored previously in SEF. By combining fluorescence lifetime imaging microscopy, scanning confocal fluorescence imaging, Rayleigh scattering imaging, optical microscopy, and finite difference time domain simulations, we identify with high accuracy the spatial locations where SEF effects (intensity increase and lifetime decrease) take place. These locations are the junctions/crevices between adjacent half-shells in the LASHS and locations of high electromagnetic field enhancement and strong emitter-plasmon interactions, as confirmed also by simulated field maps. Such detailed knowledge of the distributed SEF enhancements and lifetime modification distribution, with respect to topography, should prove useful for improved future evaluations of SEF enhancement factors and a more rational design of efficiency-optimized SEF substrates. These linear arrays of metal-coated microspheres expand the family of hybrid colloidal photonic-plasmonic crystals, platforms with potential for applications in optoelectronic devices, fluorescence-based (bio)chemical sensing, or medical assays. In particular, due to the polarized optical response of these LASHSs, specific applications such as hidden tags for anti-counterfeiting or plasmon-enhanced photodetection can be foreseen.We theoretically study the exciton-exciton annihilation (EEA) in a molecular trimer MMM. The system is treated within a model of electronic states, and the coupling to a bath is incorporated using the quantum jump method. Two situations of initial excitation are compared. In the first one, a two-photon process populates configurations M*M*M and MM*M* so that two excitons reside on neighboring monomers M. Then, EEA can immediately proceed. In contrast, if the trimer initially is in the local configuration M*MM*, exciton diffusion must occur before the annihilation process can take place. For the trimer, this excitonic motion takes place on a very short time scale. In both cases, wave packets are prepared which show a different quantum dynamics where the latter depends on the couplings and decay rates. It is documented how fifth-order coherent two-dimensional spectroscopy can be used to directly map the EEA as a function of time.Rare earth oxides are attracting increasing interest as a relatively unexplored group of materials with potential applications in heterogeneous catalysis and electrocatalysis; therefore, a credible and universal computational approach is needed for modeling their reactivity. In this work, we systematically assessed the performance of the PBE+U method against the results of the hybrid HSE06 method with respect to the description of structural parameters and energetic properties of the selected hexagonal lanthanide sesquioxides and the cubic fluorite-type cerium dioxide. In addition, we evaluated the performance of PBE+U in describing the electronic structure and adsorption properties of the CeO2(111) and Nd2O3(0001) surfaces. The HSE06 method reproduces rather well the lattice parameters and selected energetic properties with respect to the experimental values. BAY-069 price The PBE+U method is able to reproduce the results of HSE06 or the experimental values only if the U parameter is selected from an appropriate range of values.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account