• Joyce Krog posted an update 6 months, 2 weeks ago

    12, 95% CI 1.94-5.00, p < 0.00001, I

    = 0%).

    This study showed that the association between ectopic GC in salivary glands identifies a clinical subset characterized by autoantibodies presence, and probably pSS patients affected from a more severe disease.

    This study showed that the association between ectopic GC in salivary glands identifies a clinical subset characterized by autoantibodies presence, and probably pSS patients affected from a more severe disease.A disruption of the crosstalk between the gut and the lung has been implicated as a driver of severity during respiratory-related diseases. Lung injury causes systemic inflammation, which disrupts gut barrier integrity, increasing the permeability to gut microbes and their products. This exacerbates inflammation, resulting in positive feedback. We aimed to test whether severe Coronavirus disease 2019 (COVID-19) is associated with markers of disrupted gut permeability. A-366 cell line We applied a multi-omic systems biology approach to analyze plasma samples from COVID-19 patients with varying disease severity and SARS-CoV-2 negative controls. We investigated the potential links between plasma markers of gut barrier integrity, microbial translocation, systemic inflammation, metabolome, lipidome, and glycome, and COVID-19 severity. We found that severe COVID-19 is associated with high levels of markers of tight junction permeability and translocation of bacterial and fungal products into the blood. These markers of disrupted intestinal barrier integrity and microbial translocation correlate strongly with higher levels of markers of systemic inflammation and immune activation, lower levels of markers of intestinal function, disrupted plasma metabolome and glycome, and higher mortality rate. Our study highlights an underappreciated factor with significant clinical implications, disruption in gut functions, as a potential force that may contribute to COVID-19 severity.T cell receptor (TCR) recognition of peptides presented by major histocompatibility complex (MHC) molecules is a fundamental process in the adaptive immune system. An understanding of this recognition process at the molecular level is crucial for TCR based therapeutics and vaccine design. The broad nature of TCR diversity and cross-reactivity presents a challenge for traditional structural resolution. Computational modelling of TCR-pMHC complexes offers an efficient alternative. This study compares the ability of four general-purpose docking platforms (ClusPro, LightDock, ZDOCK and HADDOCK) to make use of varying levels of binding interface information for accurate TCR-pMHC modelling. Each platform was tested on an expanded benchmark set of 44 TCR-pMHC docking cases. In general, HADDOCK is shown to be the best performer. Docking strategy guidance is provided to obtain the best models for each platform for future research. The TCR-pMHC docking cases used in this study can be downloaded from https//github.com/innate2adaptive/ExpandedBenchmark.Neoadjuvant chemotherapy followed by radical cystectomy is the standard of care for patients diagnosed with muscle-invasive bladder cancer (MIBC). However, urinary diversion following radical cystectomy significantly reduces patient quality of life. In addition, patients who significantly respond to neoadjuvant chemotherapy have a strong will to preserve the bladder. Bladder-sparing therapy has become a research focus worldwide. Although the bladder-sparing regimen, referred to as trimodality therapy (TMT), has been accepted, the efficacy of immunotherapy combined with chemotherapy for bladder preservation in patients with MIBC has not yet been published. We describe the case of a 50-year-old male presented intermittent macrohematuria and was diagnosed with bladder urothelial carcinoma by diagnostic transurethral resection of bladder tumor (TURBt) with clinical stage IIIA (cT3bN0M0). A complete response was achieved after four courses of neoadjuvant chemotherapy combined with pembrolizumab. Then, we performed a second TURBt plus randomized biopsy by cystoscopy. The pathology indicated no tumor in the bladder. Adjuvant chemoradiotherapy and immunotherapy were subsequently performed. Imaging examinations, cystoscopy and urine tumor DNA (utDNA) levels were used for surveillance after treatment. Finally, the patient achieved bladder preservation and had remained cancer-free for 19 months at the last follow-up on February 20, 2021. This is the first published case study to describe neoadjuvant chemotherapy plus pembrolizumab followed by concurrent chemoradiotherapy as a novel bladder-sparing regimen and successfully achieved a promising outcome.Adoptive immunotherapy with T cells genetically modified to express chimeric antigen receptors (CARs) is a promising approach to improve outcomes for cancer patients. While CAR T cell therapy is effective for hematological malignancies, there is a need to improve the efficacy of this therapeutic approach for patients with solid tumors and brain tumors. At present, several approaches are being pursued to improve the antitumor activity of CAR T cells including i) targeting multiple antigens, ii) improving T cell expansion/persistence, iii) enhancing homing to tumor sites, and iv) rendering CAR T cells resistant to the immunosuppressive tumor microenvironment (TME). Augmenting signal 3 of T cell activation by transgenic expression of cytokines or engineered cytokine receptors has emerged as a promising strategy since it not only improves CAR T cell expansion/persistence but also their ability to function in the immunosuppressive TME. In this review, we will provide an overview of cytokine biology and highlight genetic approaches that are actively being pursued to augment cytokine signaling in CAR T cells.Killer cell immunoglobulin-like receptors (KIR) regulate immune responses in NK and CD8+ T cells via interaction with HLA ligands. KIR genes, including KIR2DS1, KIR3DL1, and KIR3DS1 have previously been implicated in psoriasis susceptibility. However, these previous studies were constrained to small sample sizes, in part due to the time and expense required for direct genotyping of KIR genes. Here, we implemented KIR*IMP to impute KIR copy number from single-nucleotide polymorphisms (SNPs) on chromosome 19 in the discovery cohort (n=11,912) from the PAGE consortium, University of California San Francisco, and the University of Dundee, and in a replication cohort (n=66,357) from Kaiser Permanente Northern California. Stratified multivariate logistic regression that accounted for patient ancestry and high-risk HLA alleles revealed that KIR2DL2 copy number was significantly associated with psoriasis in the discovery cohort (p ≤ 0.05). The KIR2DL2 copy number association was replicated in the Kaiser Permanente replication cohort.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account