• Ismail Mccray posted an update 6 months, 3 weeks ago

    The quantity and composition of nutrients carried by rivers play an important role in maintaining the ecosystem of downstream rivers and marginal seas. To reveal the impact of damming on the composition and flux changes of nutrients in rivers, this study conducted a detailed survey of a large sub-tropical reservoir (Xinanjiang Reservoir, XAJR) in eastern China from August 2013 to June 2014 obtaining samples at bi-monthly intervals. The thermal stratification, water quality in situ parameters, and the contents of nutrients in the water column of the river inflow, transition area, central reservoir area, and discharge water of the XAJR were analyzed in detail along the fluvial direction. The results show that the thermal stratification of the XAJR had seasonal and spatial heterogeneity. Accordingly, the pH and dissolved oxygen saturation degree in water also showed a similar stratification phenomenon. The analysis of nutrient limitation for primary productivity indicated that in different seasons, varying limitor artificial regulation.Obsessive-Compulsive Disorder (OCD) most often emerges during adolescence, but we know little about the aberrant neural and cognitive developmental mechanisms that underlie its emergence during this critical developmental period. To move towards a computational psychiatry of juvenile OCD, we review studies on the computational, neuropsychological and neural alterations in juvenile OCD and link these findings to the adult OCD and cognitive neuroscience literature. We find consistent difficulties in tasks entailing complex decision making and set shifting, but limited evidence in other areas that are altered in adult OCD, such as habit and confidence formation. Based on these findings, we establish a neurocomputational framework that illustrates how cognition can go awry and lead to symptoms of juvenile OCD. We link these possible aberrant neural processes to neuroimaging findings in juvenile OCD and show that juvenile OCD is mainly characterised by disruptions of complex reasoning systems.Proteinopathies are key elements in the pathogenesis of age-related neurodegenerative diseases, particularly Alzheimer’s disease (AD), with the nature and location of the proteinopathy characterizing much of the disease phenotype. Susceptibility of brain regions to pathology may partly be determined by intrinsic network structure and connectivity. It remains unknown, however, how these networks inform the disease cascade in the context of AD biomarkers, such as beta-amyloid (Aβ), in clinically-normal older adults.The default-mode network (DMN), a prominent intrinsic network, is heavily implicated in AD due to its spatial overlap with AD atrophy patterns and tau deposition. We investigated the influence of baseline Aβ positron emission tomography (PET) signal and intrinsic DMN connectivity on DMN-specific cortical thinning in 120 clinically-normal older adults from the Harvard Aging Brain Study (73 ± 6 years, 58% Female, CDR = 0). Participants underwent11C Pittsburgh Compound-B (PiB) PET, 18F flortaucipir (FTP) PET, and resting-state MRI scans at baselineand longitudinal MRI (3.6 ± 0.96 scans; 5.04 ± 0.8 years). Linear mixed models tested relationships between baseline PiB and DMN connectivity on cortical thinning in a composite of DMN regions. Lower DMN connectivity was associated with faster cortical thinning, but only in those with elevated baseline PiB-PET signal. This relationship was network specific, in that the frontoparietal control network did not account for the observed association. Additionally, the relationship was independent of inferior temporal lobe FTP-PET signal. Our findings provide evidence that compromised DMN connectivity, in the context of preclinical AD, foreshadows neurodegeneration in DMN regions.Many biosynthetic gene clusters (BGCs) require heterologous expression to realize their genetic potential, including silent and metagenomic BGCs. Although the engineered Streptomyces coelicolor M1152 is a widely used host for heterologous expression of BGCs, a systemic understanding of how its genetic modifications affect the metabolism is lacking and limiting further development. We performed a comparative analysis of M1152 and its ancestor M145, connecting information from proteomics, transcriptomics, and cultivation data into a comprehensive picture of the metabolic differences between these strains. Instrumental to this comparison was the application of an improved consensus genome-scale metabolic model (GEM) of S. coelicolor. Although many metabolic patterns are retained in M1152, we find that this strain suffers from oxidative stress, possibly caused by increased oxidative metabolism. Furthermore, precursor availability is likely not limiting polyketide production, implying that other strategies could be beneficial for further development of S. coelicolor for heterologous production of novel compounds.Mitochondrial function relies on multiple quality control mechanisms, including the release of mitochondrial vesicles. To investigate the ultrastructure and prevalence of mitochondrial membranous protrusions (and, by extension, vesicles) in neurons, we surveyed mitochondria in rat and planarian brains using transmission electron microscopy (EM). We observed that mitochondrial protrusions mostly extend from the outer membrane. Leveraging available 3D EM datasets of the brain, we further analyzed mitochondrial protrusions in neurons of mouse and Drosophila brains, identifying high-resolution spatial views of these protrusions. To assess whether the abundance of mitochondrial protrusions and mitochondria-derived vesicles respond to cellular stress, we examined neurons expressing fluorescently tagged mitochondrial markers using confocal microscopy with Airyscan and found increased numbers of mitochondrial protrusions and vesicles with mild stress. Future studies using improved spatial resolution with added temporal information may further define the functional implications of mitochondrial protrusions and vesicles in neurons.Intestinal disequilibrium leads to inflammatory bowel disease (IBD), and chronic inflammation predisposes to oncogenesis. Antigen-presenting dendritic cells (DCs) and macrophages can tip the equilibrium toward tolerance or pathology. Here we show that delta-9-tetrahydrocannabinol (THC) attenuates colitis-associated colon cancer and colitis induced by anti-CD40. Working through cannabinoid receptor 2 (CB2), THC increases CD103 expression on DCs and macrophages and upregulates TGF-β1 to increase T regulatory cells (Tregs). THC-induced Tregs are necessary to remedy systemic IFNγ and TNFα caused by anti-CD40, but CB2-mediated suppression of APCs by THC quenches pathogenic release of IL-22 and IL-17A in the colon. Dibenzazepine By examining tissues from multiple sites, we confirmed that THC affects DCs, especially in mucosal barrier sites in the colon and lungs, to reduce DC CD86. Using models of colitis and systemic inflammation we show that THC, through CB2, is a potent suppressor of aberrant immune responses by provoking coordination between APCs and Tregs.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account