-
Solis Stage posted an update 6 months, 2 weeks ago
The proof-of-concept experiments illustrate the viability of the constant pressure mode of operation for the second dimension of 2D-LC. In the described separations the throughput improvement is on the order of 10%; this gain will be strongly application-dependent, and may be as large as several tens percent in some cases. Future work will involve a detailed investigation of the impact of the constant pressure mode on robustness of 2D separations.
IgA nephropathy is thought to be an autoimmune disease wherein galactose-deficient IgA1 (Gd-IgA1) is recognized by IgG autoantibodies, resulting in formation and renal accumulation of nephritogenic immune complexes. Although this hypothesis is supported by recent findings that, in renal immunodeposits of IgA nephropathy patients, IgG is enriched for Gd-IgA1-specific autoantibodies, experimental proof is still lacking.
IgG isolated from sera of IgA nephropathy patients or produced as a recombinant IgG (rIgG) was mixed with human Gd-IgA1 to form immune complexes. IgG from healthy individuals served as a control. Nude and SCID mice were injected with human IgG and Gd-IgA1, in immune complexes or individually, and their presence in kidneys was ascertained by immunofluorescence. Pathologic changes in the glomeruli were evaluated by quantitative morphometry and exploratory transcriptomic profiling was performed by RNA-Seq.
Immunodeficient mice injected with Gd-IgA1 mixed with IgG autoantibodies from patients with IgA nephropathy, but not Gd-IgA1 mixed with IgG from healthy individuals, displayed IgA, IgG, and mouse complement C3 glomerular deposits and mesangioproliferative glomerular injury with hematuria and proteinuria. Un-complexed Gd-IgA1 or IgG did not induce pathological changes. Moreover, Gd-IgA1-rIgG immune complexes injected into immunodeficient mice induced histopathological changes characteristic of human disease. Exploratory transcriptome profiling of mouse kidney tissues indicated that these immune complexes altered gene expression of multiple pathways, in concordance with the changes observed in kidney biopsies of patients with IgA nephropathy.
This study provides the first in vivo evidence for a pathogenic role of IgG autoantibodies specific for Gd-IgA1 in the pathogenesis of IgA nephropathy.
This study provides the first in vivo evidence for a pathogenic role of IgG autoantibodies specific for Gd-IgA1 in the pathogenesis of IgA nephropathy.
Nurse educators are required to prepare graduates for the increasing complexities of the practice environment. Debate is an active teaching strategy long recognised in many disciplines to promote student-centred learning by enhancing the development of communication skills, collaboration, and critical thinking, all of which are essential skill for future nurses.
The aim of this study was to compare in-class university structured debate implementation methods among undergraduate nursing students, and to identify the effect of such debate methods in the students’ learning.
A systematic review of the literature.
Publications in English identified in multiple databases (PubMed, CINAHL, Web of Science, Medline and ERIC) from the launch of the database until 26th November 2019.
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guided the review. Studies that investigated the use of in-class debate among undergraduate nursing students as a pedagogical tool were eligible. Information re
Current studies do not provide enough evidence to understand the scope of structured debating as an instrument to develop personal competences needed in nursing. However, based on the evidence reviewed, we have identified elements to establish a debate-based learning format that might enhance student’s learning and future studies.Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. selleck chemicals In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.To realize a circular, carbon-neutral economy, it will become important to utilize the greenhouse gas CO2 as a sustainable carbon source. Carboxylases, the enzymes that capture and convert gaseous CO2 are the prime candidates to pave the way towards realizing this vision of a CO2-based bio-economy. In the last couple of years, the interest in using and engineering carboxylases has been steadily growing. Here, we discuss how basic research on the mechanism of CO2 binding and activation by carboxylases opened the way to develop new-to-nature CO2-fixing enzymes that found application in the development of synthetic CO2-fixation pathways and their further realization in vitro and in vivo. These pioneering efforts in the field pave the way to realize a diverse CO2-fixation biochemistry that can find application in biocatalysis, biotechnology, and artificial photosynthesis.
To perform a comprehensive dosimetric and clinical evaluation of the new Pinnacle Personalized automated planning system for complex head-and-neck treatments.
Fifteen consecutive head-neck patients were enrolled. Radiotherapy was prescribed using VMAT with simultaneous integrated boost strategy. Personalized planning integrates the Feasibility engine able to supply an “a priori” DVH prediction of the achievability of planning goals. Comparison between clinically accepted manually-generated (MP) and automated (AP) plans was performed using dose-volume histograms and a blinded clinical evaluation by two radiation oncologists. Planning time between MP and AP was compared. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array.
For similar targets coverage, AP plans reported less irradiation of healthy tissue, with significant dose reduction for spinal cord, brainstem and parotids. On average, the mean dose to parotids and maximal doses to spinal cord and brainstem were reduced by 13-15% (p<0.