-
Skovbjerg Roberson posted an update 6 months, 3 weeks ago
Due to the diversity of ship-radiated noise (SRN), audio segmentation is an essential procedure in the ship statuses/categories identification. However, the existing segmentation methods are not suitable for the SRN because of the lack of prior knowledge. In this paper, by a generalized likelihood ratio (GLR) test on the ordinal pattern distribution (OPD), we proposed a segmentation criterion and introduce it into single change-point detection (SCPD) and multiple change-points detection (MCPD) for SRN. The proposed method is free from the acoustic feature extraction and the corresponding probability distribution estimation. In addition, according to the sequential structure of ordinal patterns, the OPD is efficiently estimated on a series of analysis windows. By comparison with the Bayesian Information Criterion (BIC) based segmentation method, we evaluate the performance of the proposed method on both synthetic signals and real-world SRN. The segmentation results on synthetic signals show that the proposed method estimates the number and location of the change-points more accurately. The classification results on real-world SRN show that our method obtains more distinguishable segments, which verifies its effectiveness in SRN segmentation.This paper presents a review of our original results obtained during the last decade. These results have been found theoretically for classical mass-action-law models of chemical kinetics and justified experimentally. In contrast with the traditional invariances, they relate to a special battery of kinetic experiments, not a single experiment. Two types of invariances are distinguished and described in detail thermodynamic invariants, i.e., special combinations of kinetic dependences that yield the equilibrium constants, or simple functions of the equilibrium constants; and “mixed” kinetico-thermodynamic invariances, functions both of equilibrium constants and non-thermodynamic ratios of kinetic coefficients.In this review paper, the evidence and application of thermodynamic self-organization are reviewed for metals typically with single crystals subjected to cyclic loading. The theory of self-organization in thermodynamic processes far from equilibrium is a cutting-edge theme for the development of a new generation of materials. It could be interpreted as the formation of globally coherent patterns, configurations and orderliness through local interactivities by “cascade evolution of dissipative structures”. Non-equilibrium thermodynamics, entropy, and dissipative structures connected to self-organization phenomenon (patterning, orderliness) are briefly discussed. Some example evidences are reviewed in detail to show how thermodynamics self-organization can emerge from a non-equilibrium process; fatigue. Evidences including dislocation density evolution, stored energy, temperature, and acoustic signals can be considered as the signature of self-organization. Most of the attention is given to relate an analogy between persistent slip bands (PSBs) and self-organization in metals with single crystals. Some aspects of the stability of dislocations during fatigue of single crystals are discussed using the formulation of excess entropy generation.Entropy can be used in studies on foundations of quantum physics in many different ways, each of them using different properties of this mathematical object .The entropic lattice Boltzmann method for the simulation of compressible flows is studied in detail and new opportunities for extending operating range are explored. We address limitations on the maximum Mach number and temperature range allowed for a given lattice. Solutions to both these problems are presented by modifying the original lattices without increasing the number of discrete velocities and without altering the numerical algorithm. In order to increase the Mach number, we employ shifted lattices while the magnitude of lattice speeds is increased in order to extend the temperature range. Accuracy and efficiency of the shifted lattices are demonstrated with simulations of the supersonic flow field around a diamond-shaped and NACA0012 airfoil, the subsonic, transonic, and supersonic flow field around the Busemann biplane, and the interaction of vortices with a planar shock wave. For the lattices with extended temperature range, the model is validated with the simulation of the Richtmyer-Meshkov instability. We also discuss some key ideas of how to reduce the number of discrete speeds in three-dimensional simulations by pruning of the higher-order lattices, and introduce a new construction of the corresponding guided equilibrium by entropy minimization.Human key-point detection is a challenging research field in computer vision. Convolutional neural models limit the number of parameters and mine the local structure, and have made great progress in significant target detection and key-point detection. However, the features extracted by shallow layers mainly contain a lack of semantic information, while the features extracted by deep layers contain rich semantic information but a lack of spatial information that results in information imbalance and feature extraction imbalance. With the complexity of the network structure and the increasing amount of computation, the balance between the time of communication and the time of calculation highlights the importance. this website Based on the improvement of hardware equipment, network operation time is greatly improved by optimizing the network structure and data operation methods. However, as the network structure becomes deeper and deeper, the communication consumption between networks also increases, and network computing capacity is optimized. In addition, communication overhead is also the focus of recent attention. We propose a novel network structure PGNet, which contains three parts pipeline guidance strategy (PGS); Cross-Distance-IoU Loss (CIoU); and Cascaded Fusion Feature Model (CFFM).Defining and measuring spatial inequalities across the urban environment remains a complex and elusive task which has been facilitated by the increasing availability of large geolocated databases. In this study, we rely on a mobile phone dataset and an entropy-based metric to measure the attractiveness of a location in the Rio de Janeiro Metropolitan Area (Brazil) as the diversity of visitors’ location of residence. The results show that the attractiveness of a given location measured by entropy is an important descriptor of the socioeconomic status of the location, and can thus be used as a proxy for complex socioeconomic indicators.