• Bauer Flowers posted an update 6 months ago

    Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate’s reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.Sulphoaluminate cement has the advantage of low-temperature application performance, but its hydration mechanism at low temperatures is not yet clear. Anhydrous calcium sulfoaluminate (C4A3S) is the main mineral in the composition of sulfoaluminate cement clinkers. In this paper, C4A3S mixed with gypsum (CaSO4∙2H2O) to form a C4A3S-CSH2 cement system; X-ray diffraction (XRD), thermogravimetric analysis (TG-DTG), scanning electron microscopy (SEM) and mercury intrusion analysis (MIP) to clarify the effect of temperatures on the hydration properties of C4A3S-CSH2 cement system. The results showed that hydration of the C4A3S-CSH2 cement system could carry on at low temperatures, even at -15 °C. The main hydration product was ettringite. Low temperatures did not change the types of the hydration products, but the low temperature of 0 °C was more favorable for the formation of ettringite. The early hydration of the C4A3S-CSH2 cement system was inhibited by the decrease in temperature. However, hydration of the cement at 0 °C continued at a high rate after one day. Morphologies of the ettringite for the C4A3S-CSH2 cement system at -15 °C were needle-like structures, while they were of columnar structure at 0 °C. The compressive strength of samples at 0 °C reached 82 MPa, which is significantly higher than that at 20 °C.Magnetite particles deposited on the secondary side of a steam generator (SG) can degrade the integrity and performance of pressurized water reactors. Therefore, it is necessary to produce the data of fundamental interfacial electrokinetic properties of magnetite particles and SG tube materials. This study investigated the zeta potentials of magnetite nanoparticles and Alloy 690 surfaces, which were dependent on the pH value, pH agent, and the presence of NaCl. The zeta potentials of the magnetite nanoparticles increased in the negative direction as the pH increased, regardless of the pH agent. At the same pH value, the absolute values of the zeta potentials with different pH agents were ethanolamine less then ammonia less then morpholine. In the presence of NaCl, the zeta potentials of the particles further increased negatively. The meaning of the measured zeta potentials was discussed in terms of the dispersion stability and the agglomeration of the particles. selleckchem Based on the relationship between the zeta potentials of the particles and Alloy 690 surfaces, the magnetite deposition on Alloy 690 was also discussed. Furthermore, the empirical formulas for the pH-dependent zeta potentials of magnetite particles in each alkaline solution were suggested.Staphylococcus aureus is a metabolically flexible pathogen that causes infection in diverse settings. An array of virulence factors, including the secreted toxins, enables S. aureus to colonize different environmental niches and initiate infections by any of several discrete pathways. During these infections, both S. aureus and host cells compete with each other for nutrients and remodel their metabolism for survival. This metabolic interaction/crosstalk determines the outcome of the infection. The reprogramming of metabolic pathways in host immune cells not only generates adenosine triphosphate (ATP) to meet the cellular energy requirements during the infection process but also activates antimicrobial responses for eventual bacterial clearance, including cell death pathways. The selective pressure exerted by host immune cells leads to the emergence of bacterial mutants adapted for chronicity. These host-adapted mutants are often characterized by substantial changes in the expression of their own metabolic genes, or by mutations in genes involved in metabolism and biofilm formation. Host-adapted S. aureus can rewire or benefit from the metabolic activities of the immune cells via several mechanisms to cause persistent infection. In this review, we discuss how S. aureus activates host innate immune signaling, which results in an immune metabolic pressure that shapes S. aureus metabolic adaptation and determines the outcome of the infection.The aim of this study was to evaluate the retentive strength of zirconium oxide (yttria-stabilized tetragonal zirconia polycrystals (Y-TZP)) crown-copings treated by combined mechanical and chemical treatments and cemented by four types of self-adhesive resin cements (SARCs) to human prepared teeth, before and after six months of aging in water and thermocycling. A total of 120 molar teeth were mounted, prepared using a standardized protocol and digitally scanned, and Y-TZP copings were produced. Teeth were randomly assigned to four SARC groups. Prior to cementation, the intaglio surfaces of all crowns were sandblasted and then coated with Z-Prime™ Plus (Bisco Dental, Schaumburg, IL, USA). Post cementation, each cement group was subdivided into aged and non-aged groups. After aging, the cemented assemblies were tested for retentive strength using a universal testing machine. Failure analysis was conducted by inspecting all matched debonded surfaces of the teeth and crowns at 3× magnification. Aging treatment did not affect the retentive strength of the Y-TZP crown-copings (p = 0.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account