-
Aguirre Kirkeby posted an update 6 months, 2 weeks ago
The 2019 guidelines of the ESC recommend a personalized approach, in which antianginal medications are tailored towards an individual patient’s comorbidities and haemodynamic profile. Although no antianginal medication improves survival, their efficacy for reducing symptoms profoundly depends on the underlying mechanism of the angina. In this Review, we provide clinicians with a rationale for when to use which compound or combination of drugs on the basis of the pathophysiology of the angina and the mode of action of antianginal medications.
Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families.
We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines.
We established the molecular diagnosis in 46% of the cases. selleck chemicals llc We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation.
A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.
A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.
Findings from genomic sequencing can have important implications for patients and family members. Yet, when a patient does not consent to the disclosure of genetic information to relatives, it is unclear how health-care professionals (HCPs) should balance their responsibilities toward patients and their family members and whether breaches in confidentiality are warranted.
We conducted a systematic review of normative documents to understand how HCPs should discuss and facilitate family disclosure, and what should be done in cases where the patient does not consent to disclosure.
We analyzed 35 documents from advisory committees at the national, European, and international level. We identified discrepancies regarding the recommended role of HCPs in disclosure. While almost all normative documents supported the disclosure of genetic information without patient consent in limited conditions, the conditions for disclosure were often not well defined. Documents provided varying degrees of information regarding what actions HCPs must take in such situations.
Our findings present concerns regarding the ability of these normative documents to guide HCPs’ decision making around the disclosure of genetic information to family members. Clearer guidance outlining the responsibilities and acceptability of disclosure is necessary to facilitate disclosure of genetic information to family members.
Our findings present concerns regarding the ability of these normative documents to guide HCPs’ decision making around the disclosure of genetic information to family members. Clearer guidance outlining the responsibilities and acceptability of disclosure is necessary to facilitate disclosure of genetic information to family members.After decades of setbacks, gene therapy (GT) is experiencing major breakthroughs. Five GTs have received US regulatory approval since 2017, and over 900 others are currently in development. Many of these GTs target rare pediatric diseases that are severely life-limiting, given a lack of effective treatments. As these GTs enter early-phase clinical trials, specific ethical challenges remain unresolved in three domains evaluating risks and potential benefits, selecting participants fairly, and engaging with patient communities. Drawing on our experience as clinical investigators, basic scientists, and bioethicists involved in a first-in-human GT trial for an ultrarare pediatric disease, we analyze these ethical challenges and offer points to consider for future GT trials.Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.