-
Ottosen Lauritsen posted an update 6 months ago
allows prediction of natural processes.Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.Insecticide resistance is one of the major obstacles for controlling agricultural pests. There have been a lot of studies on insecticides stimulating the development of insect resistance. Herbicides account for the largest sector in the agrochemical market and are often co-applied with insecticides to control insect pests and weeds in the same cropland ecosystem. However, whether and how herbicides exposure will affect insecticide resistance in insect pests is largely unexplored. Here we reported that after exposure to herbicide butachlor, the lepidopteran Spodoptera litura larvae reduced susceptibility to the insecticide chlorpyrifos. GDC-0879 Docking simulation studies suggested that general odorant-binding protein 2 (GOBP2) could bind to butachlor with high binding affinity, and silencing SlGOBP2 by RNA interference (RNAi) decreased larval tolerance to chlorpyrifos. Butachlor exposure induced ecdysone biosynthesis, whose function on increasing chlorpyrifos tolerance was supported in synergism experiments and confirmed by silencing the key gene (SlCYP307A1) for ecdysone synthesis. Butachlor exposure also activated the expression of detoxification enzyme genes. Silencing the genes with the highest herbicide-induced expression among the three detoxification enzyme genes led to increased larval susceptibility to chlorpyrifos. Collectively, we proposed a new mechanism that olfactory recognition of herbicides by GOBP2 triggers insect hormone biosynthesis and leads to high metabolic tolerance against insecticides. These findings provide valuable information for the dissection of mechanisms of herbicide-induced resistance to insecticides and also supplements the development of reduced-risk strategies for pest control.Mixed pollution due to heavy metals (HMs), especially cadmium (Cd), lead (Pb), and arsenic (As), seriously endangers the safety of food produced in paddy soil. In the field experiments, foliar application of 2,3-dimercaptosuccinic acid (DMSA) at the flowering stage was found to significantly reduce the levels of Cd, Pb, total As, and inorganic As (iAs) in rice grains by 47.95%, 61.76%, 36.37%, and 51.24%, respectively, without affecting the concentration of metallonutrients, including Mn, K, Mg, Ca, Fe, and Zn. DMSA treatment significantly reduced the concentrations of Cd, Pb, and As in the panicle node, panicle neck, and rachis, while those in the flag leaves were significantly increased by up to 20.87%, 49.40%, and 32.67%, respectively. DMSA application promoted the transport of HM from roots and lower stalks to flag leaves with a maximum increase of 34.55%, 52.65%, and 46.94%, respectively, whereas inhibited the transport of HM from flag leaves to panicle, rachis, and grains. Therefore, foliar application of DMSA reduced Cd, Pb, and As accumulation in rice grains by immobilizing HMs in flag leaves. Thus, this strategy could act as a promising agronomic measure for the remediation of mixed HM contamination in paddy fields.Contaminants of emerging concerns present in the ecosystems causes various adverse effects on all living organisms. In current study, removal of Ce3+ from water was performed using Fe3O4/CAC nanocomposite (MCAC) synthesized by co-precipitation technique. The synthesized MCAC was characterized using various analytical techniques. The magnetic behavior of the nanocomposite which is a crucial advantage in separation of MCAC after adsorption of Ce3+ from water was determined using vibrating sample magnetometer. MCAC was polycrystalline comprising both amorphous and crystalline regions with elements like C, O, Fe and N. The influence of process parameters was optimized through batch mode with the adsorption capacity of 86.206 mg/g. Ecotoxicological studies were performed using Danio rerio (Zebra fish) and seeds of Vigna mungo and Vigna radiata to assess the harmful effects of Ce3+ before and after adsorption process. The phytotoxicity studies on seeds revealed that inhibition of growth ranges from 50.39% to 12.55% (before adsorption) and 28.57%-3.89% (after adsorption). After 96 h the LC50 value of Ce3+ on the Danio rerio before and after adsorption was 2.44 and 77.85 mg/L. Thus, the current study investigated the effective removal of Ce3+ by MCAC and evaluates its ecotoxicological effects.Clarifying the properties/features of nutrient loss from farmland surface runoff is essential for the mitigation of nutrient losses. Plough pan formation underneath topsoil is a common feature of long-term paddy soils that significantly affects water movement and nutrient runoff loss, especially during the upland season of paddy-upland rotation. To characterize the nutrients that are lost from wheat fields of paddy-wheat rotation with runoff, a field experiment was conducted in a wheat field using a simulated rainfall system from November 2019 to May 2020 in Nanjing, China. The aim of this study was to investigate the temporal characteristics of nitrogen (N) and phosphorus (P) loss under different rainfall intensities (low, 30 mm h-1; middle, 60 mm h-1; high, 90 mm h-1). The results showed that the time interval from the beginning of rain to the occurrence of runoff (time to runoff, Tr) was negatively correlated with “rainfall intensity” (Ri) (P<0.01) but unaffected by soil moisture. Different rainfall intensities had no effect on the runoff coefficient (the ratio of the runoff volume over the precipitation, 0.