• Skov Mclean posted an update 5 months, 4 weeks ago

    Herein, we developed a flexible and cost-effective manual droplet operation system (MDOS) for performing miniaturized cell assays as well as single cell analysis. The MDOS consists of a manual x-y-z translation stage for liquid transferring and switching, a high-precision syringe pump for liquid driving and metering, a tapered capillary probe for droplet manipulation, a droplet array chip for droplet loading and reaction, sample/reagent reservoirs for storage, and a microscope for droplet observation, with a total expense of only $4,000. By using the flexible combination of three elementary operations of the x-y-z stage’s moving and the pump’s aspirating and depositing, the MDOS can manually achieve multiple droplet handling operations in the nanoliter to picoliter range, including droplet generation, assembling, fusion, diluting, and splitting. On this basis, multiple cell-related operations could be performed, such as nanoliter-scale in-droplet cell culture, cell coculture, drug stimulation, cell washing, and cell staining, as well as formation of picoliter single-cell droplets. The feasibility and flexibility of the MDOS was demonstrated in multi-mode miniaturized cell assays, including cell-based drug test, first-pass effect assay, and single-cell enzyme assay. The MDOS with the features of low cost, easy to build and flexible to use, could provide a promising alternative for performing miniaturized assays in routine laboratories, in addition to conventional microfluidic chip-based systems and automated robot systems.This study was designed to optimise an analytical method for characterising TiO2 nanoparticles (NPs) in food additives and pharmaceuticals by inductively coupled plasma-mass spectrometry in single particle mode (spICP-MS). Several parameters, including transport efficiency (TE), were assessed and optimised using the NM-100 reference material. Selleck Akt inhibitor We found that self-aspiration for sample intake and use of the concentration-based method for TE was optimal for characterising TiO2 NPs. No spectral interference was observed with either 49Ti or 48Ti isotopes. The optimised Excel spreadsheet developed for this study not only provided additional parameters but gave results closer to the NM-100 reference value than the ICP-MS software. The method was then applied to the analysis of a selection of food samples and pharmaceuticals. The average diameter of TiO2 particles ranged from 86 to 179 nm in the food samples and from 131 to 197 nm in the pharmaceuticals, while the nanoparticular fraction was between 19 and 68% in food, and between 13 and 45% in pharmaceuticals.Shrimp is one of the most delicious and popular food commodities worldwide due to its exceptional taste and characteristics. Freshness is considered as a key factor for shrimp consumers because freshness has a significant relationship with taste and shelf-life of shrimp. However, post-mortem metabolism of shrimp differs from that of fish as they are highly susceptible to post-harvest quality loss, and it is hard to distinguish the freshness variation of shrimp at frozen state instantly. Thus, instant monitoring of frozen shrimp freshness is challenging for the seafood and aquaculture industries and a reliable, expeditious, and noninvasive technique to estimate shrimp quality is in high demand. Accordingly, this study aimed to visualize changes in post-mortem freshness of frozen shrimp using multidimensional fluorescence imaging. Live coonstripe shrimp (Pandalus hypsinotus) were harvested and instantly killed by beheading, cooled on ice for 0, 6, 24, 48, 72 and 96 h (n = 8), followed by processing into frozen uorescence images. Spatial-temporal changes of K-value and pH were visualized successfully in frozen shrimp by fluorescence imaging. K-value visualization was then validated effectively using another group of frozen shrimp (0-72 h ice stored) with different killing method (super chilling) and the prediction accuracy was R2 = 0.80. This novel approach using a CCD camera coupled with EEM provides a state-of-the-art authentication method for practical assessment of frozen seafood freshness.The interchange between electrospray ionization (ESI) and corona discharge ionization (CDI) with respect to applied bias on the needle is customarily placed at the point where light production begins at the tip of the needle. If a liquid sample is flowing through a needle that is observed to produce light, the ionization process is assumed to be harsher and the term coronaspray ionization has been coined to describe this hybrid ionization mechanism. In this work, the transition between ESI and CDI is investigated with respect to applied bias through optical and mass spectrometric measurements. As a function of applied bias potential, the optical signal at the tip of the needle was recorded simultaneously with the resultant ionization products. In this effort, the production of ions from an electrospray ionization needle has been demonstrated to produce light regardless of bias if ions are also formed. With this understanding, an ESI/CDI needle was designed to allow the bias to be temporarily pulsed over the ‘onset’ voltage necessary for ionization and the rise and decay of the optical signal was measured. Positive mode CDI onset to a stable discharge state within 0.05 ms, while positive ESI required 1.9 ms to reach a stable condition. In the negative mode, the stability of the ionization process was highly variable in both ESI and CDI modes, though CDI was generally faster to reach the stable mode of operation. When the resultant ions were investigated, the effect of increased bias on an ESI needle was found to be species-dependent. Recognizing that the range of compounds probed was limited, for those examined, it appears that stable, non-labile species may be investigated via ESI under extremely high biases while labile species demonstrate a narrow range of stable biases before significant fragmentation occurs.The poly(N-isopropylacrylamide) (NIPAAm) was first polymerized onto the surface of graphene quantum dots (GQDs) functionalized silica as packing materials via reversible addition-fragmentation chain transfer (RAFT) polymerization reaction, which can expand the interaction modes between stationary phase and analytes. A series of characteristic methods were selected to estimate the chemical bonding results of silica, involving Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The prepared column can exhibit reversed-phase and hydrophilic interaction modes, which were demonstrated by the retention of eight kinds of target analytes with different Log P values. The column was then applied to separate banlangen granules and further verified by HPLC tandem time-of-flight mass spectrometry (HPLC/QTOF-MS). In conclusion, Sil-GQDs-PNIPAAm stationary phase improved the analysis range and performance of traditional phases, exhibiting flexible selectivity and application prospect for both hydrophobic and hydrophilic analytes.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account