• Rask Dotson posted an update 6 months ago

    Air pollution exposure is recently reported to be one of the drivers of exacerbation in idiopathic pulmonary fibrosis (IPF). But there was a lack of direct evidence between pollution and lung fibrosis. Here, our data show effects of pollutant benzopyrene (BaP) and protein G-protein-coupled receptor family C group 5 type A (GPRC5A) on pulmonary fibrosis, which might help limit potential pollutant injury and disease progression. We cross-referenced epithelial differentially-expressed-genes (DEGs) from pollutant injury and published experimental fibrosis and IPF patients’ data, top common-DEG (CO-DEG) GPRC5A was identified as a potential link between exposure-damage and fibrogenesis. The role of GPRC5A was evaluated under BaP exposure, in idiopathic interstitial pneumonia (IIP) tissue-array and via CRISPR/Cas9 knockout mice (Gprc5a-/-). BaP exposure enhanced bleomycin (BLM)-induced murine pulmonary fibrosis with increased Fibronectin and α-SMA expression in primary fibroblasts, thickened respiratory membrane osis of IIP patients and fibrogenesis in murine model; thus, GPRC5A could serve as a novel therapeutic target in pollutant injury and pulmonary fibrosis.Silicon (Si) addition to flooded rice paddy soil tends to decrease grain inorganic arsenic (iAs) and increase grain dimethylarsinic acid (DMA) concentrations, but the mechanism for the increase in plant-available DMA is unresolved. It has been suggested that Si displaces DMA from soil solids, rendering it plant-available; however, we hypothesize that Si desorbs primarily iAs from soil solids, which stimulates methylation to DMA. We added silicic acid to a contaminated paddy soil and a flooded upland soil that had been historically contaminated with lead arsenate in a batch incubation experiment, and measured changes in solid-phase As speciation, porewater As speciation, and As-methylating microbial (AsMM) abundance over time. We found that DMA was not detectable in soils prior to the start of the experiment nor throughout the experiment, so it comprised a trace amount of total soil As. Upon Si addition to paddy soil, total As increased in porewater following Si spike and this increase was mainly due to iAs desorption, and an order of magnitude less MMA and DMA was desorbed. The upland soil transitioned to reducing conditions throughout the experiment, but when they were achieved, iAs was desorbed first and this was followed by an increase of MMA and then DMA compared to control soils. Total microbial community abundance increased over the course of the experiments and arsM gene abundance increased from initial conditions, but did not differ between treatments. In the paddy soil, the ratio of arsM16S gene abundance decreased from the initial conditions, but it increased in the upland soil with historic As contamination. These results suggest that Si-induced desorption of DMA is small and likely does not explain the increases of plant-available DMA upon Si fertilization in prior work. Likely, Si-induced iAs desorption drives microorganisms to methylate iAs, but degree of methylation will differ between soils.The ingestion of microplastics by shellfish pose a potential health risk for human via seafood consumption. This study investigated and compared the contamination levels and potential human health risks of microplastics in the digestive system of commercial shellfish from North (Qingdao) and South (Xiamen) China. Microplastics were detected in 70%-100% of shellfish samples from Qingdao and 70%-90% of shellfish samples from Xiamen, with abundances ranging from 1.2 to 4.1 items/individual (or 0.8-4.4 items/g, wet weight of digestive system) in shellfish from Qingdao and 1.3-6.0 items/individual (or 2.1-4.0 items/g) in shellfish from Xiamen. The microplastic composition was dominated by rayon and tended to be fibrous in shape, and white, black, and transparent in color. Microplastics less then 500 μm were the dominant size range, in which the size range of 100-200 μm was the most abundant size. Features of microplastics in the water-dwelling shellfish were different from those of the sediment-dwelling shellfish, and the microplastic features in the shellfish correlated with the sampling region, shellfish length, total wet body weight, and wet weight of the digestive system. Risk assessment results revealed that the potential human health risk posed by microplastics from the digestive system of commercial shellfish was higher in Qingdao than Xiamen.Dredged sediment contains various contaminants that are released during the process of dewatering and subsequent utilization. In this study, two organic polymers-chitosan (CS) and cationic polyacrylamide (CPAM) both in samples of varying molecular weights (MWs)-were used as flocculants to improve dewatering and rheological behaviors of dredged sediment, and floc properties were characterized to unravel the mechanisms of flocculation treatment. Moreover, pollutant transfer and release in the flocculation-dewatering process was investigated. Compared to CPAM, CS had better performance in dredged sediment dewatering, and more compact flocs were produced after treatment. The flocculated sediment belonged to the type of yield dilatant fluid and showed good shear resistance. Three-dimensional excitation-emission matrix spectroscopy and PARAFAC showed that protein-like substances were removed after treatment. The MW of CS had insignificant effects on flocculation performance, whereas CPAM removal efficiency for protein-like substances was increased at higher MWs, which may be related to the adsorption bridging effect of CPAM polymer chains. There were significant correlations between the dewatering performance of sediments, MW distribution of organics and rheological properties. CS and CPAM treatments caused the transformation of Fe/Al-P into CaP, which could reduce phosphorus release and its ecological risk. Danuglipron The flocculants contributed to the formation of carbonate-bound forms of As, Cr, Pb, and Ni. Ecological risk assessment results of the geo-accumulation index showed that medium- and low-MW CS reduced risk of sediment contamination, whereas CPAM and high-MW CS increased the ecological risk. CS had a greater effect on the release of VOCs than CPAM, with an increased release of total VOCs at higher flocculant MWs. The study was helpful to understand the dewatering mechanism of dredged sediment and provided a new strategy for pollution release management in sediment dewatering.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account