-
Skovbjerg Lundsgaard posted an update 6 months, 3 weeks ago
We present numerical evidence for an additional discontinuous transition, upon compression, inside the jammed regime for an asymmetric bidisperse granular packing. This additional transition line separates jammed states with networks of predominantly large particles from jammed networks formed by both large and small particles, and the transition is indicated by a discontinuity in the number of particles contributing to the jammed network. The additional transition line emerges from the curves of jamming transitions and terminates in an end point where the discontinuity vanishes. The additional line is starting at a size ratio around δ=0.22 and grows longer for smaller δ. For δ→0, the additional transition line approaches a limit that can be derived analytically. The observed jamming scenarios are reminiscent of glass-glass transitions found in colloidal glasses.We consider graphene superlattice miniband fermions probed by electronic interferometry in magnetotransport experiments. By decoding the observed Fabry-Pérot interference patterns together with our corresponding quantum transport simulations, we find that the Dirac quasiparticles originating from the superlattice minibands do not undergo conventional cyclotron motion but follow more subtle trajectories. In particular, dynamics at low magnetic fields is characterized by peculiar, straight trajectory segments. Our results provide new insights into superlattice miniband fermions and open up novel possibilities to use periodic potentials in electron optics experiments.We explore order in low angle grain boundaries (LAGBs) embedded in a two-dimensional crystal at thermal equilibrium. Symmetric LAGBs subject to a Peierls potential undergo, with increasing temperatures, a thermal depinning transition; above which, the LAGB exhibits transverse fluctuations that grow logarithmically with interdislocation distance. Longitudinal fluctuations lead to a series of melting transitions marked by the sequential disappearance of diverging algebraic Bragg peaks with universal critical exponents. Aspects of our theory are checked by a mapping onto random matrix theory.We consider the effects of off shell Hawking radiation on scattering processes involving black holes coupled to quantum fields. The focus here is on the case of gravitational scattering of a scalar field mediated by the exchange of virtual Hawking gravitons from a four-dimensional Schwarzschild black hole. Our result is obtained in the context of a worldline effective field theory for the black hole and is valid in the semiclassical limit where the Schwarzschild radius r_s is larger than the Planck length 1/m_Pl. In addition, we assume that four-momentum exchange q is smaller than r_s^-1 and that the incoming particle has energy larger then the black hole’s Hawking temperature. The inelastic cross section we obtain is a new, leading-order quantum gravity effect, arising at the same order in q^2/m_Pl^2 as the well-understood one-loop graviton vacuum polarization corrections to gravitational scattering between massive particles.Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to the function of the separated mixture, yet it is unclear what determines the morphology when multiple phases are present. We developed a graph theory approach to predict the topology of coexisting phases from a given set of surface energies, enumerate all topologically distinct morphologies, and reverse engineer conditions for surface energies that produce the target morphology.We study the interaction of surface acoustic waves with spin waves in ultrathin CoFeB/Pt bilayers. Because of the interfacial Dzyaloshinskii-Moriya interaction (DMI), the spin wave dispersion is nondegenerate for oppositely propagating spin waves in CoFeB/Pt. In combination with the additional nonreciprocity of the magnetoacoustic coupling itself, which is independent of the DMI, highly nonreciprocal acoustic wave transmission through the magnetic film is observed. We systematically characterize the magnetoacoustic wave propagation in a thickness series of CoFeB(d)/Pt samples as a function of magnetic field magnitude and direction, and at frequencies up to 7 GHz. We quantitatively model our results to extract the strength of the DMI and magnetoacoustic driving fields.We present a consistency condition for 8D N=1 supergravity theories with nontrivial global structure G/Z for the non-Abelian gauge group, based on an anomaly involving the Z 1-form center symmetry. Elacridar chemical structure The interplay with other swampland criteria identifies the majority of 8D theories with gauge group G/Z, which have no string theory realization, as inconsistent quantum theories when coupled to gravity. While this condition is equivalent to geometric properties of elliptic K3 surfaces in F-theory compactifications, it constrains the unexplored landscape of gauge groups in other 8D string models.It is well known that superconductivity in quasi-one-dimensional (Q1D) materials is hindered by large fluctuations of the order parameter. They reduce the critical temperature and can even destroy the superconductivity altogether. Here it is demonstrated that the situation changes dramatically when a Q1D pair condensate is coupled to a higher-dimensional stable one, as in recently discovered multiband Q1D superconductors. The fluctuations are suppressed even by vanishingly small pair-exchange coupling between different band condensates and the superconductor is well described by the mean field theory. In this case the low dimensionality effects enhance the coherence of the system instead of suppressing it. As a result, the critical temperature of the multiband Q1D superconductor can increase by orders of magnitude when the system is tuned to the Lifshitz transition with the Fermi level close to the edge of the Q1D band.Dipole spin-wave states of atomic ensembles with wave vector k(ω) mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in k space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a ^87Rb gas with ∼75% single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.