• Good Johannessen posted an update 5 months, 4 weeks ago

    Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. AT-527 datasheet This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.Transposons are mobile genetic elements that have made a large contribution to genome evolution in a largely species-specific manner. A wide variety of different transposons have invaded genomes throughout evolution, acting in a first instance as ‘selfish’ elements, whose success was determined by their ability to self-replicate and expand within the host genome. However, their coevolution with the host has created many crossroads between transposons and the regulation of host gene expression. Transposons are an abundant source of transcriptional modulatory elements, such as gene promoters and enhancers, splicing and termination sites, and regulatory non-coding RNAs. Moreover, transposons have driven the evolution of host defence mechanisms that have been repurposed for gene regulation. However, dissecting the potential functional roles of transposons remains challenging owing to their evolutionary path, as well as their repetitive nature, which requires the development of specialized analytical tools. In this special issue, we present a collection of articles that lay out current paradigms in the field and discuss a vision for future research. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21-22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21-22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21-22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21-22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21-22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.The cell culture-based retrotransposition reporter assay has been (and is) an essential tool for the study of vertebrate Long INterspersed Elements (LINEs). Developed more than 20 years ago, this assay has been instrumental in characterizing the role of LINE-encoded proteins in retrotransposition, understanding how ribonucleoprotein particles are formed, how host factors regulate LINE mobilization, etc. Moreover, variations of the conventional assay have been developed to investigate the biology of other currently active human retrotransposons, such as Alu and SVA. Here, we describe a protocol that allows combination of the conventional cell culture-based LINE-1 retrotransposition reporter assay with short interfering RNAs (siRNAs) and microRNA (miRNAs) mimics or inhibitors, which has allowed us to uncover specific miRNAs and host factors that regulate retrotransposition. The protocol described here is highly reproducible, quantitative, robust and flexible, and allows the study of several small RNA classes and various retrotransposons. To illustrate its utility, here we show that siRNAs to Fanconi anaemia proteins (FANC-A and FANC-C) and an inhibitor of miRNA-20 upregulate and downregulate human L1 retrotransposition, respectively. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.Transposable element (TE)-derived sequences comprise more than half of the human genome, and their presence has been documented to alter gene expression in a number of different ways, including the generation of alternatively spliced transcript isoforms. Alternative splicing has been associated with tumorigenesis for a number of different cancers. The objective of this study was to broadly characterize the role of human TEs in generating alternatively spliced transcript isoforms in cancer. To do so, we screened for the presence of TE-derived sequences co-located with alternative splice sites that are differentially used in normal versus cancer tissues. We analysed a comprehensive set of alternative splice variants characterized for 614 matched normal-tumour tissue pairs across 13 cancer types, resulting in the discovery of 4820 TE-generated alternative splice events distributed among 723 cancer-associated genes. Short interspersed nuclear elements (Alu) and long interspersed nuclear elements (L1) were found to contribute the majority of TE-generated alternative splice sites in cancer genes.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account