• Ipsen McBride posted an update 7 months ago

    In search of promising Na+ ion conductors, we have detected a superionic phase in a Vantoffite mineral, Na6Co(SO4)4, at 570 °C, thus enhancing the use of minerals to produce futuristic solid state electrolytes. Na6Co(SO4)4 crystallizes concomitantly to produce di- and tetrahydrate forms from an aqueous solution. Both the crystal forms belong to a triclinic system, space group P1. The mineral transforms to a dehydrated phase as established by in situ single crystal X-ray diffraction at 217 °C and is shown to be isostructural with its Mn analogue. Even though thermal analysis indicates a single structural phase transition at 450 °C, the features associated with in situ powder X-ray diffraction as well as in situ Raman spectroscopy signify a second phase transition ≈540 °C and the behavior of ionic conductivity leads to a superionic phase (σ ≈ 10-2 S/cm at 570 °C). These observations are significant for the development and understanding of mineral based solid electrolytes.We describe an approach enabling the identification of the elemental composition of uranium microparticles with undefined geometry using standardless quantitative electron probe microanalysis (EPMA) and micro-Raman spectrometry (MRS). The standardless procedure is based on a ZAF peak-to-background quantitative method in combination with Monte Carlo simulations. The experimental X-ray spectra were measured with an energy-dispersive spectrometer attached to a scanning electron microscope. To account for the X-ray intensity loss due to the transmission of electrons in microparticles with irregular shapes, a method was developed enabling the determination of an apparent thickness of the particle by means of the mean distance that electrons travel inside the particle before being transmitted. Size effects were further taken into account by using peak-to-background ratios and performing simulations on a particle with a thickness equal to the apparent thickness. To assess the validity of the standardless procedure in EPMA, weight fractions were determined for NIST homogeneous spherical microparticles of K411 glass and compared to certified ones. The correction of size effects was achieved and lead to accurate quantitative results with absolute relative deviations less than 9%. The model used for the determination of the apparent thickness was validated on the set of spherical K411 particles and enabled us to conduct quantifications on irregularly shaped uranium microparticles. The chemical composition of uranium particles was further investigated using MRS which enabled us to verify the reliability of the results obtained by the standardless approach.A novel strategy for developing homogeneous reversibly interlocking polymer networks (RILNs) with enhanced mechanical properties and underwater self-healing ability is proposed. The RILNs are prepared by the topological reorganization of two preformed cross-linked polymers containing reversible catechol-Fe3+ coordinate bonds and imine bonds and exhibit enhanced mechanical properties, superior underwater self-healing effect within a wide pH range, and water-assisted recycling ability through synergetic action between the reversible catechol-Fe3+ and imine bonds. At higher pH values, the catechol-Fe3+ coordinate bonds are responsible for self-healing, while the imine bonds maintain the stability of the materials. In neutral water, the imine bonds mainly account for self-healing, and hydrogen bonds and entanglements between the two networks prevent the material from collapsing. Under a lower pH value, intermolecular hydrogen bonds and entanglements contribute to self-healing. The outcomes of this work provide a new idea for developing robust multifunctional underwater self-healing materials.Electroless deposition (ELD) is a process widely used for the production of thin metal films, but stripping the films from the substrate remains challenging. Here, we report a low-cost ELD method for the large-scale production of freestanding copper (Cu) foils in a short time of 25-55 min. By atomizing a thin ( less then 100 nm) sacrificial layer of chitosan with weak glycosyl bonds and a high degree of deacetylation on the glass substrate, the chitosan is completely decomposed in the process of Cu-deposition, producing automatically shedded Cu foils with varied thicknesses from 746 nm to 8.33 μm and high elastic modulus. When used as battery current collectors, the thin Cu foils with enhanced adhesive fastness and contact areas greatly enhance the capacity and rate capability of graphite anodes. Compared with the commercial Cu current collectors, both the battery capacity and energy density are increased by 429.6 and 484.1%, respectively. The reported approach can be extended for fabricating other metal foils such as nickel with properties appealing for applications.Despite advances in diagnosis and treatment, tuberculosis (TB) continues to be one of the essential health problems throughout the world. Turkey is considered to be endemic for TB. In this study, we analyzed the distribution of Mycobacterium species, compare the diagnostic methods, and susceptibilities to anti-tuberculosis drugs of TB isolates. The aim was to document the current status and to provide a frame of reference for future studies. In this study, 278 Mycobacterium species isolated from 7,480 patients between September 2015 and June 2019 were included. selleck chemical Löwenstein-Jensen medium (LJ) and MGIT 960 were used for the isolation of strains. Susceptibility to 1st-line anti-tuberculosis drugs was determined. Positivity rates in clinical samples were as follows 1.4% for direct microscopic acid-fast bacilli (AFB) detection, 3.4% for growth on the LJ, and 3.7% for growth on MGIT-960. Two hundred thirty-three isolates were identified as Mycobacterium tuberculosis complex (MTBC) and 45 were non-tuberculous mycobacd twice between the ages of 20–31 and 60–71. A hundred and eighty-two MTBC isolates (78.1%) were susceptible to all 1st-line anti-tuberculosis drugs, while 51 isolates (21.9%) were resistant to at least one drug tested. The multidrug-resistant tuberculosis rate was 13.7% among resistant strains and 3% in all strains. The liquid cultures were better for detection of both MTBC and NTMs isolates. The data demonstrate that MTBC continues to be challenge for this country and indicates the need for continued surveillance and full-spectrum services of mycobacteriology laboratory and infectious diseases.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account