-
Tuttle Malling posted an update 6 months ago
We simulate the propagation of the abruptly autofocusing chirped ring Pearcey Gaussian vortex (CRPGV) beams with caustics by modulating the phase of a circularly symmetric optical wavefront appropriately. The propagation characteristics of the CRPGV beams are explored in the Kerr medium. Different caustic surfaces of revolution which can be used as optical bottles are formed during the propagation. We also introduce the influence of the initial input power, the chirp factor and the stochastic type perturbations for the CRPGV beams during the propagation. Furthermore, the dynamics of the optical bottle and the breathers-like structures are explored in detail.Spatial frequency modulated imaging (SPIFI) enables the use of an extended excitation source for linear and nonlinear imaging with single element detection. To date, SPIFI has only been used with fixed excitation source geometries. Here, we explore the potential for the SPIFI method when a spatial light modulator (SLM) is used to program the excitation source, opening the door to a more versatile, random access imaging environment. In addition, an in-line, quantitative pulse compensation and measurement scheme is demonstrated using a new technique, spectral phase and amplitude retrieval and compensation (SPARC). This enables full characterization of the light exposure conditions at the focal plane of the random access imaging system, an important metric for optimizing, and reporting imaging conditions within specimens.Singleshot polychromatic coherent diffractive imaging is performed with a high-intensity high-order harmonic generation source. The coherence properties are analyzed and several reconstructions show the shot-to-shot fluctuations of the incident beam wavefront. The method is based on a multi-step approach. First, the spectrum is extracted from double-slit diffraction data. The spectrum is used as input to extract the monochromatic sample diffraction pattern, then phase retrieval is performed on the quasi-monochromatic data to obtain the sample’s exit surface wave. Reconstructions based on guided error reduction (ER) and alternating direction method of multipliers (ADMM) are compared. ADMM allows additional penalty terms to be included in the cost functional to promote sparsity within the reconstruction.The intensity-amplitude correlation functions for a driven cavity QED system with two non-identical atoms are investigated in this paper. With the support of conditional homodyne detection, one can detect the time-dependent intensity-amplitude correlation functions experimentally. We find time-asymmetry in this correlation when the driving field is tuned to be resonant with the two-photon excitation state, which brings non-Gaussian fluctuations. The physical origin of these phenomena is the distinction of the third-order moment based on complete-collapse and partial-collapse, which corresponds to the measuring sequence of the intensity and amplitude. Finally, we also examined the nonclassical features of the system, which always exhibits photon bunching. The squeezing occurs in the region of weak driving and disappears with the increase of driving strength. Hence, a new classical inequality based on the technique of homodyne cross-correlation measurement is introduced to determine the nonclassicality of the non-Gaussian system in the region of unsqueezing.High-fidelity transmission of polarization encoded qubits plays a key role in long distance quantum communication. By establishing the channel between ground and satellite, the communication distance can even exceed thousands of kilometers. Aimed to achieve the efficient uplink quantum communication, here we describe a high-fidelity polarization design of a transmitting antenna with an average polarization extinction ratio of 8871 by a local test. We also implement a feasible polarization-compensation scheme for satellite motions with a fidelity exceeding 0.995 ± 0.001. Based on these works, we demonstrate the ground-to-satellite entanglment distribution with a violation of Bell inequality by 2.312±0.096, which is well above the classic limit 2.The storage and retrieval efficiency (SRE) and lifetime of optical quantum memories are two key performance indicators for scaling up quantum information processing. Here, we experimentally demonstrate a cavity-enhanced long-lived optical memory for two polarizations in a cold atomic ensemble. Using electromagnetically induced-transparency (EIT) dynamics, we demonstrate the storages of left-circularly and right-circularly polarized signal light pulses in the atoms, respectively. By making the signal and control beams collinearly pass through the atoms and storing the two polarizations of the signal light as two magnetic-field-insensitive spin waves, we achieve a long-lived (3.5 ms) memory. By placing a low-finesse optical ring cavity around the cold atoms, the coupling between the signal light and the atoms is enhanced, which leads to an increase in SRE. The presented cavity-enhanced storage shows that the SRE is ∼30%, corresponding to an intrinsic SRE of ∼45%.Orbital angular momentum (OAM) modes of electromagnetic (EM) waves have been extensively studied to obtain more than two independent channels at a single frequency. Thus far, however, multiple radiators have been used to achieve this goal in wireless communications. For the first time, a single radiator was designed to simultaneously transmit three OAM waves in free space at the same frequency. Our design makes use of the radiating resonant modes of a dielectric resonator antenna (DRA). For demonstration, a wireless communication system consisting of a pair of transmitting and receiving OAM DRAs was setup and measured. Three EM waves carrying three different signals were transmitted and received successfully, increasing the system throughput without requiring any complex signal processing algorithms. read more It confirms that a single radiator can wirelessly transmit more than two independent EM waves at a single frequency by using multi-OAM modes. The work is useful for the future high-speed wireless communication systems.