• Hoover Povlsen posted an update 6 months, 4 weeks ago

    The small changes in concentration of unsaturated fatty acids (UFAs) cause a significant influence on the aromatic component of wines. selleck chemicals In this work, the effect of UFAs mixture (including linoleic, oleic, and α-linolenic acids) addition on intra-metabolites and aromatic compounds of two Saccharomyces cerevisiae strain EC1118 and BDX were investigated in red wine fermentation, respectively. The results showed that the pre-fermentative addition of UFAs significantly modified the physiological and energetic state of cells, and affected the levels of intra-metabolites in glycolysis pathway and TCA cycle, redox balance, ATP pool, fatty acids, and amino acids metabolism, which consequently altered the chemical and volatile composition of the wines. Different with the control wine, the wines produced by UFAs addition were characterized with higher amounts of glycerol, C6-alcohols and higher alcohols, and lower levels of acetic acid, medium-chain fatty acids, and acetate esters. Interestingly, the production of ethyl esters showed opposite profiles in different strains due to the distinct expression of EEB1, indicating that the effect of UFAs on ethyl esters syntheses is strain-specificity. Our results highlighted the effectiveness of modulating UFAs content in shaping aroma characteristics, and verified that fine adjusting the content of UFAs combined with inoculating proper yeast is a promising strategy to modulate the aromatic quality of wine, which probably provides an alternative approach to meet the expectations of wine consumers for diverse aromatic qualities.Marine rhodophyte polysaccharides have a wide range of described biological properties with nontoxic characteristics, and show great potential in prebiotics and the functional foods industries. However, there is a virtual lack of Gracilaria blodgettii polysaccharides (GBP) profiling and their bioactivities. This study was designed while keeping in view the lack of physical and chemical characterization of GBP. This polysaccharide was also not previously tested for any bioactivities. A linear random coil conformation was observed for GBP, which was found to be a polysaccharide. A significant sulfate (w/w, 9.16%) and 3,6-anhydrogalactose (AHG, w/w, 17.97%) content was found in GBP. The significant difference in its setting (27.33 °C) and melting (64.33 °C) points makes it resistant to increasing heat. This, in turn, points to its utility in industrial scale processing and in enhancing the shelf-life of products under high temperatures. A radical scavenging activity of 19.80%, 25.42% and 8.80% was noted for GBP (3 mg/mL) in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (ABTS) and hydroxyl radical (HO) scavenging assays, respectively. Therefore, the findings suggest that Gracilaria blodgettii polysaccharides display a good antioxidant potential and may have potential applications in the functional food industry.The aim of this paper is to highlight the role of contrast-enhanced ultrasound in breast cancer in terms of diagnosis, staging and follow-up of the post-treatment response. Contrast-enhanced ultrasound (CEUS) is successfully used to diagnose multiple pathologies and has also clinical relevance in breast cancer. CEUS has high accuracy in differentiating benign from malignant lesions by analyzing the enhancement characteristics and calculating the time-intensity curve’s quantitative parameters. It also has a significant role in axillary staging, especially when the lymph nodes are not suspicious on clinical examination and have a normal appearance on gray-scale ultrasound. The most significant clinical impact consists of predicting the response to neoadjuvant chemotherapy, which offers the possibility of adjusting the therapy by dynamically evaluating the patient. CEUS is a high-performance, feasible, non-irradiating, accessible, easy-to-implement imaging method and has proven to be a valuable addition to breast ultrasound.Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.Members of the Phylum Mollusca include shellfish such as oysters and squid but also the edible garden snail known as Helix aspersa. This snail species is consumed as a delicacy in countries including France (where they are known as petit-gris), southern Spain (where they are known as Bobe), Nigeria, Greece, Portugal and Italy but is not a traditional food in many other countries. However, it is considered an excellent protein source with a balanced amino acid profile and an environmentally friendly, sustainable protein source. The aim of this work was to develop a different dietary form of snail protein by generating protein hydrolysate ingredients from the edible snail using enzyme technology. A second aim was to assess the bioactive peptide content and potential health benefits of these hydrolysates. H. aspersa hydrolysates were made using the enzyme Alcalase® and the nutritional profile of these hydrolysates was determined. In addition, the bioactive peptide content of developed hydrolysates was identified using mass spectrometry.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account