• Hodges Gregory posted an update 6 months, 2 weeks ago

    This paper is primarily concentrated on finite-time cluster synchronization of fractional-order complex-variable networks with nonlinear coupling by utilizing the non-decomposition method. Firstly, two control strategies are designed which are relevant to complex-valued sign functions. Thereafter, by employing fractional-order stability theory and complex function theory, several criteria are deduced to ensure finite-time cluster synchronization under the framework within a new norm consisting of absolute values for real and imaginary components. Furthermore, the setting time is effectively estimated based on some significant properties of fractional-order Caputo derivation and Mittag-Leffler functions. Lastly, two numerical examples are given to verify the effectiveness of theoretical results.Dissimilatory metal-reducing bacteria (DMRB) have a variety of c-type cytochromes (OM c-cyts) intercalated in their outer membrane, and this structure serves as the physiological basis for DMRB to carry out the extracellular electron transfer processes. Using Geobacter sulfurreducens as a model DMRB, we demonstrated that visible-light illumination could alter the electronic state of OM c-cyts from the ground state to the excited state in vivo. The existence of excited-state OM c-cyts in vivo was confirmed by spectroscopy. More importantly, excited-state OM c-cyts had a more negative potential compared to their ground-state counterparts, conferring DMRB with an extra pathway to transfer electrons to semi-conductive electron acceptors. To demonstrate this, using a TiO2-coated electrode as an electron acceptor, we showed that G. sulfurreducens could directly utilise the conduction band of TiO2 as an electron acceptor under visible-light illumination (λ > 420 nm) without causing TiO2 charge separation. When G. sulfurreducens was subject to visible-light illumination, the rate of extracellular electron transfer (EET) to TiO2 accelerated by over 8-fold compared to that observed under dark conditions. Results of additional electrochemical tests provided complementary evidence to support that G. sulfurreducens utilised excited-state OM c-cyts to enhance EET to TiO2.Microbial electrosynthesis (MES) is an advanced technology for efficient treatment of organic wastewater and recovery of new energy, with the advantages and disadvantages of single-chamber and dual-chamber MES reactors being less understood. Therefore, we explored the effects of single-chamber and dual-chamber structures on the methane production performance and microbial community structure of MES. Results indicated that methane concentration and current density of single-chamber MES were higher than those of dual-chamber MES, and the system stability was better, while chemical oxygen demand (COD) removal rate and cumulative methane production were not significantly different. Analysis of microbial community structure showed the abundance of acidogens and H2-producing bacteria was higher in single-chamber MES, while fermentation bacteria and methanogens was lower. The abundance of methanogens of dual-chamber MES (21.74-24.70%) was superior to the single-chamber MES (8.23-10.10%). Moreover, in dual-chamber MES, methane was produced primarily through acetoclastic methanogenic pathway, while in single-chamber MES cathode, methane production was mainly by hydrogenotrophic methanogenic pathway. Information provided will be useful to select suitable reactors and optimize reaction design.Polymorphism is an important aspect in drug metabolism responsible for different individual response to drug dosage, often leading to adverse drug reactions. Here human CYP2C9 as well as its polymorphic variants CYP2C9*2 and CYP2C9*3 present in approximately 35% of the Caucasian population have been engineered by linking their gene to the one of D. vulgaris flavodoxin (FLD) that acts as regulator of the electron flow from the electrode surface to the haem. The redox properties of the immobilised proteins were investigated by cyclic voltammetry and electrocatalysis was measured in presence of the largely used anticoagulant drug S-warfarin, marker substrate for CYP2C9. Immobilisation of the CYP2C9-FLD, CYP2C9*2-FLD and CYP2C9*3-FLD on DDAB modified glassy carbon electrodes showed well defined redox couples on the oxygen-free cyclic voltammograms and mid-point potentials of all enzymes were calculated. Electrocatalysis in presence of substrate and quantification of the product formed showed lower catalytic activities for the CYP2C9*3-FLD (2.73 ± 1.07 min-1) and CYP2C9*2-FLD (12.42 ± 2.17 min-1) compared to the wild type CYP2C9-FLD (18.23 ± 1.29 min-1). These differences in activity among the CYP2C9 variants are in line with the reported literature data, and this set the basis for the use of the bio-electrode for the measurement of the different catalytic responses towards drugs very relevant in therapy.In this study, we developed an electrochemical-based single-use neurobiosensor based on multiwalled carbon nanotube (MWCNT)-gold nanoparticle (AuNP) nanocomposite doped, 11-amino-1-undecanethiol (11-AUT)-modified polyethylene terephthalate coated indium tin oxide (ITO-PET) electrodes. FX-909 manufacturer This electrode was used for the sensitive determination of DJ-1, a protein responsible for mitochondrial dysfunction in Parkinson’s disease (PD) with the task of eliminating oxidative stress. The design strategy and analytical studies for the neurobiosensor were monitored with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. The selective determination range for DJ-1 of the developed neurobiosensor system is 4.7-4700 fg mL-1 in accordance with the charge transfer resistance (Rct) associated with a limit of detection of 0.5 fg mL-1. Since changes in the expression of DJ-1 protein is particularly important in cerebrospinal fluid (CSF) and saliva, the ability of the developed neurobiosensor system to detect the DJ-1 protein in these media was tested by the standard addition method. The statistical results show that the biosensor decorated with MWCNT-AuNP-AUT may be recommended for the selective determination of DJ-1 protein.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account