-
McCullough Conley posted an update 6 months ago
Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.
Pandemic scenarios like the current Corona outbreak show the vulnerability of both globalized markets and just-in-time production processes for urgent medical equipment. Even usually cheap personal protection equipment becomes excessively expensive or is not deliverable at all. To avoid dangerous situations especially to medical professionals, but also to affected patients, 3D-printer and maker-communities have teamed up to develop and print shields, masks and adapters to help the medical personnel. In this study, we investigate three home-made respiratory masks for filter and protection efficacy and discuss the results and legal aspects.
A home-printed respiratory mask with a commercial filter, a scuba-diving mask with a commercial filter and a mask sewn from a vacuum cleaner bag were investigated with 99mTc-labeled NaCl-aerosol, and the respective filter-efficacy was measured under a scintigraphic camera.
The sewn mask from a vacuum cleaner bag had a filter efficacy of 69.76%, the 3D-printed mask of 39.27% and the scuba-diving mask of 85.07%.
Home-printed personal protection equipment can be a-yet less efficient-alternative against aerosol in case professional masks are not available, but legal aspects of their use and distribution have to be kept in mind in order to avoid compensation claims.
Home-printed personal protection equipment can be a-yet less efficient-alternative against aerosol in case professional masks are not available, but legal aspects of their use and distribution have to be kept in mind in order to avoid compensation claims.DNA barcoding can identify biological species and provides an important tool in diverse applications, such as conserving species and identifying pathogens, among many others. If combined with statistical tests, DNA barcoding can focus taxonomic scrutiny onto anomalous species identifications based on morphological features. Accordingly, we put nonparametric tests into a taxonomic context to answer questions about our sequence dataset of the formal fungal barcode, the nuclear ribosomal internal transcribed spacer (ITS). compound library inhibitor For example, does DNA barcoding concur with annotated species identifications significantly better if expert taxonomists produced the annotations? Does species assignment improve significantly if sequences are restricted to lengths greater than 500 bp? Both questions require a figure of merit to measure of the accuracy of species identification, typically provided by the probability of correct identification (PCI). Many articles on DNA barcoding use variants of PCI to measure the accuracy of species identification, but do not provide the variants with names, and the absence of explicit names hinders the recognition that the different variants are not comparable from study to study. We provide four variant PCIs with a name and show that for fixed data they follow systematic inequalities. Despite custom, therefore, their comparison is at a minimum problematic. Some popular PCI variants are particularly vulnerable to errors in species annotation, insensitive to improvements in a barcoding pipeline, and unable to predict identification accuracy as a database grows, making them unsuitable for many purposes. Generally, the Fractional PCI has the best properties as a figure of merit for species identification. The fungal genus Ramaria provides unusual taxonomic difficulties. As a case study, it shows that a good taxonomic background can be combined with the pertinent summary statistics of molecular results to improve the identification of doubtful samples, linking both disciplines synergistically.Wolbachia are the world’s most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA’s N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA’s putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.
Mixed/polyclonal infections due to different genotypes are reported in Tuberculosis. The current study was designed to understand the fate of mixed infections during the course of treatment and follow-up and its role in disease pathogenesis.
Sputum samples were collected on 0,1,2,3,6,12 and 24 months from 157 treatment-naïve patients, cultures subjected to Drug-Susceptibility-testing (MGIT 960), spoligotyping, MIRU-VNTR and SNP genotyping. All isolated colonies on thin layer agar (7H11) were subjected to spoligotyping.
One thirty three baseline cultures were positive (133/157, 84.7%), 43(32.3%) had mixture of genotypes. Twenty-four of these patients (55.8%) showed change in genotype while six showed different drug-susceptibility patterns while on treatment. Twenty-three (53.5%) patients with polyclonal infections showed resistance to at least one drug compared to 10/90 (11.1%) monoclonal infections (P<0.0001). Eight patients had recurrent TB, two with a new genotype and two with altered phenotypic DST.