-
Kemp Crabtree posted an update 6 months, 2 weeks ago
Meanwhile, a discriminative viewpoint instance discovery method is also proposed to discard the viewpoint instances unfavorable for action characterization. The wide-range experiments on five data sets demonstrate that our proposition can significantly enhance the performance of cross-view 3-D action recognition. And, it is also applicable to cross-view 3-D object recognition. The source code is available at https//github.com/3huo/ActionView.As a generation of the real-valued neural network (RVNN), complex-valued neural network (CVNN) is based on the complex-valued (CV) parameters and variables. The fractional-order (FO) CVNN with linear impulses and fixed time delays is discussed. By using the sign function, the Banach fixed point theorem, and two classes of activation functions, some criteria of uniform stability for the solution and existence and uniqueness for equilibrium solution are derived. check details Finally, three experimental simulations are presented to illustrate the correctness and effectiveness of the obtained results.Unsupervised domain adaptation aims to transfer knowledge from labeled source domain to unlabeled target domain. Recently, multisource domain adaptation (MDA) has begun to attract attention. Its performance should go beyond simply mixing all source domains together for knowledge transfer. In this article, we propose a novel prototype-based method for MDA. Specifically, for solving the problem that the target domain has no label, we use the prototype to transfer the semantic category information from source domains to target domain. First, a feature extraction network is applied to both source and target domains to obtain the extracted features from which the domain-invariant features and domain-specific features will be disentangled. Then, based on these two kinds of features, the named inherent class prototypes and domain prototypes are estimated, respectively. Then a prototype mapping to the extracted feature space is learned in the feature reconstruction process. Thus, the class prototypes for all source and target domains can be constructed in the extracted feature space based on the previous domain prototypes and inherent class prototypes. By forcing the extracted features are close to the corresponding class prototypes for all domains, the feature extraction network is progressively adjusted. In the end, the inherent class prototypes are used as a classifier in the target domain. Our contribution is that through the inherent class prototypes and domain prototypes, the semantic category information from source domains is transformed into the target domain by constructing the corresponding class prototypes. In our method, all source and target domains are aligned twice at the feature level for better domain-invariant features and more closer features to the class prototypes, respectively. Several experiments on public data sets also prove the effectiveness of our method.In this article, a data-driven distributed control method is proposed to solve the cooperative optimal output regulation problem of leader-follower multiagent systems. Different from traditional studies on cooperative output regulation, a distributed adaptive internal model is originally developed, which includes a distributed internal model and a distributed observer to estimate the leader’s dynamics. Without relying on the dynamics of multiagent systems, we have proposed two reinforcement learning algorithms, policy iteration and value iteration, to learn the optimal controller through online input and state data, and estimated values of the leader’s state. By combining these methods, we have established a basis for connecting data-distributed control methods with adaptive dynamic programming approaches in general since these are the theoretical foundation from which they are built.With the booming of deep learning, massive attention has been paid to developing neural models for multilabel text categorization (MLTC). Most of the works concentrate on disclosing word-label relationship, while less attention is taken in exploiting global clues, particularly with the relationship of document-label. To address this limitation, we propose an effective collaborative representation learning (CRL) model in this article. CRL consists of a factorization component for generating shallow representations of documents and a neural component for deep text-encoding and classification. We have developed strategies for jointly training those two components, including an alternating-least-squares-based approach for factorizing the pointwise mutual information (PMI) matrix of label-document and multitask learning (MTL) strategy for the neural component. According to the experimental results on six data sets, CRL can explicitly take advantage of the relationship of document-label and achieve competitive classification performance in comparison with some state-of-the-art deep methods.In recommendation, both stationary and dynamic user preferences on items are embedded in the interactions between users and items (e.g., rating or clicking) within their contexts. Sequential recommender systems (SRSs) need to jointly involve such context-aware user-item interactions in terms of the couplings between the user and item features and sequential user actions on items over time. However, such joint modeling is non-trivial and significantly challenges the existing work on preference modeling, which either only models user-item interactions by latent factorization models but ignores user preference dynamics or only captures sequential user action patterns without involving user/item features and context factors and their coupling and influence on user actions. We propose a neural time-aware recommendation network (TARN) with a temporal context to jointly model 1) stationary user preferences by a feature interaction network and 2) user preference dynamics by a tailored convolutional network. The feature interaction network factorizes the pairwise couplings between non-zero features of users, items, and temporal context by the inner product of their feature embeddings while alleviating data sparsity issues. In the convolutional network, we introduce a convolutional layer with multiple filter widths to capture multi-fold sequential patterns, where an attentive average pooling (AAP) obtains significant and large-span feature combinations. To learn the preference dynamics, a novel temporal action embedding represents user actions by incorporating the embeddings of items and temporal context as the inputs of the convolutional network. The experiments on typical public data sets demonstrate that TARN outperforms state-of-the-art methods and show the necessity and contribution of involving time-aware preference dynamics and explicit user/item feature couplings in modeling and interpreting evolving user preferences.