-
Eriksen Didriksen posted an update 6 months, 3 weeks ago
Severe coronavirus disease 2019 (COVID-19) is characterized by the development of a deleterious hyperinflammatory response, in which the pleiotropic cytokine interleukin (IL)-6 plays a pivotal role. The administration of immunomodulatory therapies has been proposed to revert the tissue damage induced by COVID-19-related cytokine release syndrome (CRS). The present review summarizes the biological rationale and available clinical experience with this therapeutic strategy in the specific scenario solid organ transplantation (SOT).
A number of case reports, case series, and non-controlled cohort studies have assessed the efficacy and safety of the anti-IL-6-receptor monoclonal tocilizumab in SOT (namely kidney transplantation) recipients with COVID-19 pneumonia and CRS. Although the heterogeneity in patient management and the lack of a control group limit the interpretation of these results, tocilizumab therapy appears to provide some clinical benefit in post-transplant COVID-19 and to be reasonably safe in w quality. In the absence of RCT, observational studies including well-matched control groups should be designed in future.The catalytic steam reforming of oxygenated hydrocarbons has been holding an interest in scientific societies for the past two decades. The hydrogen production from steam reforming of glycerol, ethanol and other oxygenates such as ethylene glycol and propylene glycol are more suitable choice not just because it can be produced from renewable sources, but it also helps to decrease the transportation fuel price and making it more competitive. In addition, hydrogen itself is a green fuel for the transportation sector. The studies on the production of hydrogen from various reforming technologies revealed a remarkable impact on the environmental and socio-economic issues. Researchers became more focused on glycerol steam reforming (GSR), ethanol steam reforming (ESR) and other oxygenates to investigate the catalyst suitability, their kinetics and challenges for the sustainability of the oil and gas production. In the present work, the authors critically addressed the challenges and strategies for hydrogen production via GSR, ESR and other oxygenates reforming process. This review covers extensively thermodynamic parametric analysis, catalysts developments, kinetics and advancement in the operational process for glycerol, ethanol and few other oxygenates. This detailed investigation only highlights the steam reforming process (SRP) of these oxygenates at the laboratory experimental stage. 6ThiodG It was found that from this review, there are many technical issues, which lead to economic challenges. The issues are yet to be addressed and thus, these particular applications require faster accelerations at the pilot scale, taking into the consideration of the current pandemic and economic issues, for a safer and greener environment. Graphical abstract.The intracellular environment is highly crowded with biomacromolecules such as proteins and nucleic acids. Under such conditions, the structural and biophysical features of nucleic acids have been thought to be different from those in vitro. To obtain high-resolution structural information on nucleic acids in living cells, the in-cell NMR method is a unique tool. Following the first in-cell NMR measurement of nucleic acids in 2009, several interesting insights were obtained using Xenopus laevis oocytes. However, the in-cell NMR spectrum of nucleic acids in living human cells was not reported until two years ago due to the technical challenges of delivering exogenous nucleic acids. We reported the first in-cell NMR spectra of nucleic acids in living human cells in 2018, where we applied a pore-forming toxic protein, streptolysin O. The in-cell NMR measurements demonstrated that the hairpin structures of nucleic acids can be detected in living human cells. In this review article, we summarize our recent work and discuss the future prospects of the in-cell NMR technique for nucleic acids.A mathematical model of amyloid fiber formation is described that is able to simply specify different rates of fiber breakage at internal versus end regions. This Note presents the derivation of the relevant equations and provides results showing the dramatic effects of position biased fiber breakage on the kinetics of amyloid growth.Low-complexity (LC) sequences, regions that are predominantly made up of limited amino acids, are often observed in eukaryotic nuclear proteins. The role of these LC sequences has remained unclear for decades. Recent studies have shown that LC sequences are important in the formation of membrane-less organelles via liquid-liquid phase separation (LLPS). The RNA binding protein, fused in sarcoma (FUS), is the most widely studied of the proteins that undergo LLPS. It forms droplets, fibers, or hydrogels using its LC sequences. The N-terminal LC sequence of FUS is made up of Ser, Tyr, Gly, and Gln, which form a labile cross-β polymer core while the C-terminal Arg-Gly-Gly repeats accelerate LLPS. Normally, FUS localizes to the nucleus via the nuclear import receptor karyopherin β2 (Kapβ2) with the help of its C-terminal proline-tyrosine nuclear localization signal (PY-NLS). Recent findings revealed that Kapβ2 blocks FUS mediated LLPS, suggesting that Kapβ2 is not only a transport protein but also a chaperone which regulates LLPS during the formation of membrane-less organelles. In this review, we discuss the effects of the nuclear import receptors on LLPS.Takotsubo cardiomyopathy (TCOM) is a syndrome characterized by acute systolic dysfunction that can mimic acute coronary syndrome (ACS), usually incited by physical or emotional stress. However, acute neurological dysfunction, including seizures, has been recently described as an additional risk factor for the development of TCOM. This specific case report reviews the pathophysiology of TCOM and its management. We emphasize that providers should maintain a high index of suspicion for TCOM after acute neurologic dysfunction in patients with chest pain or hemodynamic instability, while also initiating proper investigation for ACS. Although classically thought of as a transient process, recent data show that both in-hospital and post-hospital morbidity and mortality related to this condition remain concerning.