• Barrera Britt posted an update 6 months, 2 weeks ago

    According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.The aim was to investigate the combined effect of Debaryomyces hansenii and Qiweibaizhu powder (QWBZP) on the bacterial diversity of the intestinal mucosa of antibiotic-associated diarrhea (AAD) mice, for the potential treatment of diarrhea, especially which is induced by administration of antibiotics. Eighteen (18) mice were randomly assigned to three equal groups of six mice, namely Normal (mn group), Placebo control (mm group) and D. hansenii and QWBZP (DQ) treatment (mdq group). Mice were gavaged with a solution (23.33 mL·kg-1·day-1) consisting of gentamicin and cefradine to establish AAD. The DQ treatment group was gavaged with DQ for 4 days, and sterile water was used as a placebo control. The metagenome DNA of the intestinal mucosal microbiota was extracted, and the 16S rRNA gene was sequenced. Analysis showed that there were 288 OTUs for the normal group, 443 for the placebo control group, and 229 for the DQ treatment group. Phylogenetically, the gut microbiota of the DQ treatment group and the normal group were closer to each other than to the placebo control group. Both the DQ and placebo-treated groups included Stenotrophomonas, Robinsoniella, Bacteroidales S24-7 group norank, Citrobacter, and Glutamicibacter, but their abundances were significantly higher in the DQ treatment group than in the placebo control group. This suggested that the combined use of D. hansenii and QWBZP overcame the influence of dysbacteriosis and could lead to the recovery of intestinal mucosal microbiota homeostasis. This positive effect is likely related to short-chain fatty acid (SCFA)-producing bacteria, such as members of Micrococcaceae, Lachnospiraceae, and Bacteroidales S24-7 group, which could play beneficial roles in protecting the mucosal barrier and stimulating the immune response in mice.Alkane-1-monooxygenase of alkanotrophic Rhodococcus species has been characterized using standard bioinformatics tools to investigate phylogenetic relationships, and three-dimensional structure and functions. Results revealed that activity of the Rhodococcus alkane-1-monooxygenase would be optimum in alkaline pH as their isoelectric points were in the range of 7.5 to 9. Higher aliphatic index (87 to 95) indicated that these enzymes are thermostable. Extinction coefficient of the enzyme varied from 68,793 to 1,25,820 M-1 cm-1 and average molecular weight was 45 kDa. Secondary structures predicted maximum alpha-helical content rather than the other conformations such as sheets or turns. The instability index (II) of most stable query protein was 39.7% which was lowest among all 76 proteins analysed in this study. MitoPQ Predicted 3D structure of query protein revealed that it contains homodimer polypeptides. The suitable template for query protein was Flavin-dependent luciferase-type alkane monooxygenase. The presence of 98.3% amino acid residues in Ramachandran plot was determined in 3-D protein model which confirmed the model feasibility. The predicted model contains 12% more α-helix than template protein which indicated towards membrane localization of the protein. The protein interactome partners of predicted model were determined as FMN-dependent oxidoreductase, molybdopterin, nuclear transport factor, and peroxiredoxin. The predicted tertiary model of R. rhodochrous alkane-1-monooxygenase (OOL33526.1) was deposited in Protein Model Database (Accession No. PM0083166). The overall report is unique to best of our knowledge, and the importance of this study is to understand the theoretical aspects of structure and functions of alkane-1-monooxygenase of hydrocarbonoclastic strains of Rhodococcus.The different developmental stage-associated microbiota of the peach fruit fly, Bactrocera zonata (Diptera Tephritidae), was characterized using 16S rRNA gene (V3-V4 region) metabarcoding on the Illumina HiSeq platform. Taxonomically, at 97% similarity, there were total 16 bacterial phyla, comprising of 24 classes, 55 orders, 90 families and 134 genera. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the most abundant phyla with Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia and Bacilli being the most abundant classes. The bacterial genus Enterobacter was dominant in the larval and adult stages and Pseudomonas in the pupal stage. A total of 2645 operational taxonomic units (OTUs) were identified, out of which 151 OTUs (core microbiota) were common among all the developmental stages of B. zonata. The genus Enterobacter, Klebsiella and Pantoea were dominant among the core microbiota. PICURSt analysis predicted that microbiota associated with B. zonata may be involved in membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair processes as well as in cellular processes and signalling. The microbiota that was shared by all the developmental stages of B. zonata in the present study could be targeted and the foundation for research on microbiota-based management of fruit flies.A biotin-labeled, non-isotopic, novel polyprobe was developed for the simultaneous detection of six viruses viz. apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), apple stem grooving virus (ASGV), cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV) and plum pox virus (PPV) infecting stone and pome fruit trees through dot-blot hybridization assay. The sensitivity of the polyprobe was checked by serial dilutions of total RNA extracted from the tissues of infected trees. ACLSV was detected up to a dilution of 5-5, whereas ApMV, ASGV, CVA, PPV and PNRSV up to 5-4. The developed assay was validated following testing a total of 45 symptomatic leaf samples collected from different geographical regions of Jammu and Kashmir (India), and the presence of the viruses was further confirmed by RT-PCR and sequencing. The polyprobe, designed for performing molecular hybridization assay can be developed quickly and avoid the tedious transformation and cloning procedures. Apart from simultaneously detecting viruses in stone and pome fruit trees, it holds great potential for virus indexing programmes to ascertain the supply of virus-free plant materials to the growers.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account