• Moran Richmond posted an update 6 months, 3 weeks ago

    Brain-computer interface (BCI) can provide a way for the disabled to interact with the outside world. Steady-state visual evoked potential (SSVEP), which evokes potential through visual stimulation is one of important BCI paradigms. In laboratory environment, the classification accuracy of SSVEPs is excellent. However, in motion state, the accuracy will be greatly affected and reduce quite a lot. In this paper, in order to improve the classification accuracy of the SSVEP signals in the motion state, we collected SSVEP data of five targets at three speeds of 0km/h, 2.5km/h and 5km/h. A compare network based on convolutional neural network (CNN) was proposed to learn the relationship between EEG signal and the template corresponding to each stimulus frequency and classify. Compared with traditional methods (i.e., CCA, FBCCA and SVM) and state-of-the-art method (CNN) on the collected SSVEP datasets of 20 subjects, the method we proposed always performed best at different speeds. Therefore, these results validated the effectiveness of the method. In addition, compared with the speed of 0 km / h, the accuracy of the compare network at a high walking rate (5km/h) did not decrease much, and it could still maintain a good performance.Decoding upper-limb movements in invasive recordings has become a reality, but neural tuning in non-invasive low-frequency recordings is still under discussion. Recent studies managed to decode movement positions and velocities using linear decoders, even developing an online system. The decoded signals, however, exhibited smaller amplitudes than actual movements, affecting feedback and user experience. Recently, we showed that a non-linear offline decoder can combine directional (e.g., velocity) and non-directional (e.g., speed) information. In this study, it is assessed if the non-linear decoder can be used online to provide real-time feedback. Five healthy subjects were asked to track a moving target by controlling a robotic arm. click here Initially, the robot was controlled by their right hand; then, the control was gradually switched until it was entirely controlled by the electroencephalogram (EEG). Correlations between actual and decoded movements were generally above chance level. Results suggest that information about speed was also encoded in the EEG, demonstrating that the proposed non-linear decoder is suitable for decoding real-time arm movements.A large amount of calibration data is typically needed to train an electroencephalogram (EEG)-based brain-computer interfaces (BCI) due to the non-stationary nature of EEG data. This paper proposes a novel weighted transfer learning algorithm using a dynamic time warping (DTW) based alignment method to alleviate this need by using data from other subjects. DTW-based alignment is first applied to reduce the temporal variations between a specific subject data and the transfer learning data from other subjects. Next, similarity is measured using Kullback Leibler divergence (KL) between the DTW aligned data and the specific subject data. The other subjects’ data are then weighted based on their KL similarity to each trials of the specific subject data. This weighted data from other subjects are then used to train the BCI model of the specific subject. An experiment was performed on publicly available BCI Competition IV dataset 2a. The proposed algorithm yielded an average improvement of 9% compared to a subject-specific BCI model trained with 4 trials, and the results yielded an average improvement of 10% compared to naive transfer learning. Overall, the proposed DTW-aligned KL weighted transfer learning algorithm show promise to alleviate the need of large amount of calibration data by using only a short calibration data.Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.Subject-independent brain-computer interfaces (SI-BCIs) which require no calibration process, are increasingly affect researchers in BCI field. The efficiencies (accuracies), however, were not satisfying till now. In this paper, we proposed a weighted subject-semi-independent classification method (WSSICM) for ERP based BCI system in which a few blocks data of target subject were used. 47 participants were attended in this study. We compared the accuracies of proposed method with traditional subject-specific classification method(SSCM) which used 15 blocks data of target subject. The averaged accuracies were 95.2% for the WSSICM at 5 blocks and 95.7% for the SSCM at 15 blocks. The accuracies of two method did not show significant difference (p-value=0.652). The method we proposed in this paper which could reduce the calibration time can be used for future BCI systems.Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient information detection technology by detecting event-related brain responses evoked by target visual stimuli. However, a time-consuming calibration procedure is needed before a new user can use this system. Thus, it is important to reduce calibration efforts for BCI applications. In this paper, we collect an RSVP-based electroencephalogram (EEG) dataset, which includes 11 subjects. The experimental task is image retrieval. Also, we propose a multi-source transfer learning framework by utilizing data from other subjects to reduce the data requirement on the new subject for training the model. A source-selection strategy is firstly adopted to avoid negative transfer. And then, we propose a transfer learning network based on domain adversarial training. The convolutional neural network (CNN)-based network is designed to extract common features of EEG data from different subjects, while the discriminator tries to distinguish features from different subjects.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account