-
Church Lodberg posted an update 6 months, 4 weeks ago
Organogels have a wide variety of applications in the fields of chemistry, electricity, biomedicine and environmental engineering, which call for robust strategies for designing and developing novel organogelators. Here, we reported a pentapeptide, ECAYF, which was capable of forming a self-healing ethanol gel exhibiting viscoelastic and solid-like properties. The ethanol gel of ECAYF was stable for at least several months, suggesting strong non-covalent interactions between ethanol and the peptide in the gel. In the ethanol gel, self-assembled peptide fibrils were found to immobilize the ethanol molecules for gelation. Results also suggested that the EAF-5 peptide adopted H-bonding β-sheet secondary structures, which further assembled into fibrils. Meanwhile, the self-assembly of the ECAYF peptide in mixtures of differently fractioned ethanol and H2O was observed, which clearly indicated that ethanol promoted the assembly of ECAYF in the solutions. These findings are helpful in understanding the roles of organic solvents as well as the complicated interactions between the solvent and gelator molecules in gelation.Lipid-derived electrophile (LDE) modifications, which are covalent modifications of proteins by endogenous LDEs, are essential types of protein posttranslational modifications. LDE modifications alter the protein structure and regulate their biological processes in cells. LDE modifications of proteins are also closely associated with several diseases and function as potential biomarkers for clinical diagnosis. The crucial step in studying the LDE modifications is to enrich the LDE modified proteins/peptides from complex biological samples with high efficiency and high selectivity and quantify modified proteins/peptides with high accuracy. In this review, we summarize the recent progress in MS-based proteomic technologies to globally identify and quantify LDE modified proteomes, mainly focusing on discussing the qualitative and quantitative technologies.We explore coherent multi-photon processes in 87Rb133Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simulation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of 87Rb133Cs up to N = 6, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient Dv = h × 207.3(2) Hz.The Himalayan monal is a bird in the pheasant family, and it is the national bird of Nepal. The bird possesses spectacular iridescent plumage with a range of different metallic colours. Smad pathway Here, we have studied the internal structure of its feathers from different parts of the bird’s body and showed that its beautiful colours and iridescence are due to photonic structures present in the internal structure of the feathers. Sharp changes in the reflected brilliance were observed from the feathers upon changing the illumination conditions, such as horizontal and azimuthal angles. The feathers exhibited interesting hydrophobic properties, with the dull-coloured proximal end showing lower hydrophobicity with a contact angle between 90° and 110° compared with the iridescent distal end of a feather exhibiting a contact angle between 115° and 120°, attributed to the change in the internal structure and/or density of the feathers. A quick reversible change in colours of these feathers was observed when they were soaked in water and other liquids, which reversed upon drying. The shift in colour was suggested to be due to the swelling of the keratin layer of barbules that absorbed liquids and as a result modified the refractive index and periodicity of the internal photonic structures. The colour shift response of feathers was different in the case of alcohols and other water-based solutions, suggesting different swelling behaviour of keratin against different liquids; the water-based solution had the more pronounced effect. Such photonic modulation can be utilized in colour selective filters and sensing devices.Although ab initio CASSCF calculations yield a good numerical estimate of barrier height for magnetisation reversal for mononuclear Dy(iii) SIMs, obtaining a reliable value for higher nuclearity clusters such as Dy2 are challenging. By analysing ab initio computed data of thirty-one different Dy2 SMMs, we propose a model equation that relates the calculated barrier heights to the experimental values and offers a viable way to predict the barrier heights in Dy2 SMMs.A variant of 1,4,7,10-tetraazacyclododecane (cyclen) bearing two semicarbazone pendant groups has been prepared. The octadentate ligand forms complexes with Bi3+ and Pb2+. X-ray crystallography showed that the neutral ligand provides an eight-coordinate environment for both metal ions and intermolecular hydrogen bond interactions have influenced the coordination environments of both complexes in the solid state. NMR spectroscopy revealed a fluxional environment for both complexes. The ligand was radiolabeled with the α-emitting radioactive isotope 213Bi3+, which is used in systemic targeted radiotherapy. The resulting complex was stable in serum for at least 90 min (two decay half-lives). The Pb2+ complex has reasonably fast kinetics of formation (t1/2 = 20 min) at 25 °C and pH 7.4. The Bi3+ and Pb2+ complexes show kinetic stability in 1.2 M HCl (half-lives of 214 min and 47 min, respectively). This is the first description of a macrocycle bearing semicarbazone pendant groups and its utility in coordinating main group metals, specifically those with radiotherapeutic potential.