-
Guthrie Burris posted an update 6 months, 2 weeks ago
With a N-doped carbon matrix, NiCoZn@CN-600 shows good cycling stability in five times run. NiCoZn@CN-600 is also competent in the catalytic transfer hydrogenation (CTH) of FOL, affording >99% yield with 2-propanol as a H donor. This study opens an avenue toward rational design of multimetallic doping catalysts with high selectivity for challenging reactions in the conversion of biomass-derived compounds.Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both Mpro and PLpro proteases. These efforts identified a small number of hits for the Mpro protease and no viable hits for the PLpro protease. Of the Mpro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead Mpro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of Mpro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting Mpro and PLpro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.Plasmonic Bi2WO6 with strong localized surface plasmon resonance (LSPR) around the 500-1400 region is successfully constructed by electron doping. Oxygen vacancies on W-O-W (V1) and Bi-O-Bi (V2) sites are precisely controlled to obtain Bi2WO6-V1 with LSPR and Bi2WO6-V2 with defect absorption. Density functional theory (DFT) calculation demonstrates that the V1-induced energy state facilitates photoelectron collection for a long lifetime, resulting in LSPR of Bi2WO6. Photoelectron trapping on V1 sites is demonstrated by a single-particle photoluminescence (PL) study, and 93% PL quenching efficiency is observed. With strong LSPR, plasmonic Bi2WO6-V1 exhibits highly selective methane generation with a rate of 9.95 μmol g-1 h-1 during the CO2 reduction reaction (CO2-RR), which is 26-fold higher than 0.37 μmol g-1 h-1 of BiWO3-V2 under UV-visible light irradiation. LSPR-dependent methane generation is confirmed by various photocatalytic results of plasmonic Bi2WO6 with tunable LSPR and different light excitations. Furthermore, the DFT-simulated pathway of CO2-RR and in situ Fourier transform infrared spectra on the surface of Bi2WO6 prove that V1 sites facilitate CH4 generation. Our work provides a strategy to obtain nonmetallic plasmonic materials by electron doping.Thin solid polymer electrolytes (SPEs) with good processability, improved room-temperature ionic conductivity, and better interfacial compatibility are urgently needed to develop solid-state batteries without safety and leakage issues. In-built electrolyte polymerization has emerged as a novel and effective platform to obtain such electrolytes. However, existing in-built methods usually involve heat, UV, γ irradiation, and so forth to initiate the polymerization and often require the addition of solvents to avoid the concentrated active propagating species, which inevitably afford solvent residues that persist in the electrolyte matrix, leading to complex SPE preparation processes, safety hazards, and side reactions with the electrodes. selleck kinase inhibitor Herein, a simple solvent-free preparation of the poly(mPEGAA)-based electrolyte film was achieved via the photo-controlled radical polymerization under visible light irradiation via an in-built manner, which resulted in 99% monomer conversion within 5 min to obtain the polymer electrolytes with a controlled molecular weight distribution. Thanks to the mild and green conditions, a thin, solvent-free, and cross-linked SPE electrolyte film was obtained efficiently yet in a well-regulated manner, which gave rise to good interfacial compatibility and an improved room-temperature ionic conductivity of 1.5 × 10-4 S cm-1 at 25 °C. As-prepared solid-state LiFePO4|Li batteries based on the in-built thin SPE exhibited a high discharge areal capacity of 1.7 mA h cm-2 (164.6 mA h g-1) at an ambient temperature. Furthermore, the system displayed lithium dendrite suppression behavior and good long-term charge-discharge cycling in the Li symmetric battery for over 270 h, representing enhanced stability and capacities compared with ex-built systems.This article discusses the crucial role and dearth of critical care nurses in the United States highlighted during the COVID-19 pandemic. This challenge of sufficient critical care nursing resources existed before the pandemic, but now concern is heightened by the need for such crucial healthcare providers now and in the future. We present strategies to address the gap, as well as challenges inherent in the suggested approaches. The discussion is relevant as nurse leaders adapt to COVID-19 and other novel challenges in the future.This article describes an academic-clinical partnership program between a school of nursing and an American Nurse Credentialing Center Magnet®- and National Cancer Institute-designated Comprehensive Cancer Center based on a shared vision and multifaceted for optimal new graduate operating room (OR) recruitment and use of clinical partner resources. The program, now in its 3rd year, has a 100% retention rate among the cohorts. Implementing a multifaceted OR partnership program based on nursing theory is a strategy for workforce development to increase retention of new graduate OR nurses.