-
Holder Warren posted an update 6 months, 2 weeks ago
This description was borne out in detail by the activation energy trends with increasing concentration derived from the relaxation of both the H2O/H3O+ and H2SO4/HSO4-/SO42- 17O resonances and the 1H self-diffusivity. However, the 17O chemical shift difference between the H2O/H3O+ and H2SO4/HSO4-/SO42- resonances across the entire temperature range is nevertheless strikingly linear. A computational approach coupling molecular dynamics simulations and density functional theory NMR shift calculations to reproduce this trend is presented, which will be the subject of further development. This combination of multinuclear, dynamical NMR, and computational methods, and the results furnished by this study, will provide a platform for future studies on battery electrolytes where aqueous sulfate chemistry plays a central role in the solution structure.As quantum chemistry calculations deal with molecular systems of increasing size, the memory requirement to store electron-repulsion integrals (ERIs) greatly outpaces the physical memory available in computing hardware. The Cholesky decomposition of ERIs provides a convenient yet accurate technique to reduce the storage requirement of integrals. Recent developments of a two-step algorithm have drastically reduced the memory operation (MOP) count, leaving the floating operation (FLOP) count as the last frontier of cost reduction in the Cholesky ERI algorithm. In this report, we introduce a dynamic integral tracking, reusing, and compression/elimination protocol embedded in the two-step Cholesky ERI method. Benchmark studies suggest that this technique becomes particularly advantageous when the basis set consists of many computationally expensive high-angular-momentum basis functions. With this dynamic-ERI improvement, the Cholesky ERI approach proves to be a highly efficient algorithm with minimal FLOP and MOP count.Moiré superlattices of van der Waals structures offer a powerful platform for engineering band structure and quantum states. For instance, Moiré superlattices in magic-angle twisted bilayer graphene, ABC trilayer graphene have been shown to harbor correlated insulating and superconducting states, while in transition metal dichalcogenide (TMD) twisted bilayers, Moiré excitons have been identified. Here we show that the effects of a Moiré superlattice on the band structure are general In TMD twisted bilayers, excitons and exciton complexes can be trapped in the superlattice in a manner analogous to ultracold bosonic or Fermionic atoms in optical lattices. Using twisted MoSe2 homobilayers as a model system, we present evidence for Moiré trions. Our results thus open possibilities for designer van der Waals structures hosting arrays of Fermionic or bosonic quasiparticles, which can be used to realize tunable many-body states crucial for quantum simulation and quantum information processing.Using UV-vis and resonance Raman spectroscopy, we identify a 2+ active site in O2 and N2O activated Cu-CHA that reacts with methane to form methanol at low temperature. The Cu-O-Cu angle (120°) is smaller than that for the 2+ core on Cu-MFI (140°), and its coordination geometry to the zeolite lattice is different. Site-selective kinetics obtained by operando UV-vis show that the 2+ core on Cu-CHA is more reactive than the 2+ site in Cu-MFI. From DFT calculations, we find that the increased reactivity of Cu-CHA is a direct reflection of the strong 2+ bond formed along the H atom abstraction reaction coordinate. A systematic evaluation of these 2+ cores reveals that the higher O-H bond strength in Cu-CHA is due to the relative orientation of the two planes of the coordinating bidentate O-Al-O T-sites that connect the 2+ core to the zeolite lattice. This work along with our earlier study ( J. Am. Chem. Soc, 2018, 140, 9236-9243) elucidates how zeolite lattice constraints can influence active site reactivity.The construction of organic optoelectronic materials with desirable size and morphology remains a challenge now. Crystal engineering strategies (polymorphs and cocrystals) provide convenience for tailoring molecular packing and further controlling the growth morphology and photofunctionality of materials. Herein, we prepare polymorphic 2D plate crystals and 3D microhelixes by assembly of a cyanostilbene derivative (2-(3′,5′-bis(trifluoromethyl)-biphenyl-4-yl)-3-(4-(pyridin-4-yl)phenyl)acrylonitrile, CF3-CN-Py). The former emits blue emission, while the latter emits green emission. Different crystallization environments contribute to the adjustable morphologies. Then, novel cocrystals are fabricated with the introduction of 1,4-diiodotetrafluorobenzene (FDIB) to CF3-CN-Py. Both molecular conformation and packing are totally changed in the cocrystal system. Such cocrystal displays a 1D sky-blue emissive rod shape on account of a long-range ordered π-stacking of molecules. In addition, the 2D plate crystal and 1D rod cocrystal are further applied to optical waveguides. In the plate crystal, a packing of transition dipole moment (μ) inclined to the upper surface leads to an anisotropic optical waveguide. In the cocrystal, owing to the nearly horizontal μ orientation, the cocrystal exhibits light propagation along the primary growth direction and a low optical loss coefficient. The present study supplies an effective way to construct materials with controlled morphology and optical waveguide.We report on activity-guided investigation of the key antisweet principles of Gymnema sylvestre. Orosensory-guided fractionation by means of solid phase extraction, preparative 2D-LC, and semipreparative HPLC followed by accurate MS and 1D/2D NMR experiments revealed six known and three previously unknown gymnemic acids as the key constituents of seven highly sensory-active fractions. Localized via a modified comparative taste dilution analysis (cTDA) and taste modulation probability (TMP) based screening techniques, a strong intrinsic bitterness was also observed for gymnemic acids. In addition, the suppressive effects of the most abundant acids on the response of the human sweet taste receptor to sucrose were verified by means of a functional hTAS1R2/hTAS1R3 sweet taste receptor assay. this website This in vitro screening revealed large differences in antisweet activity among the isolated compounds, where gymnemic acids XV and XIX showed the highest sweet suppressing activity. This broad-based molecular characterization of the sweet taste inhibiting activity of Gymnema sylvestre will enable further insight into the molecular basis of sweet taste modulation at the receptor level.