-
Hovgaard Vinding posted an update 6 months, 1 week ago
9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.The conversion of soluble proteins into amyloid fibrils has importance in protein chemistry, biology, biotechnology and medicine. A novel lipase from Pseudomonas sp. was previously shown to have an extremely high aggregation propensity. It was therefore herein studied to elucidate the physicochemical and structural determinants of this extreme behaviour. Amyloid-like structures were found to form in samples up to 2.5-3.0 M using Thioflavin T fluorescence and Congo red binding assays. However, dynamic light scattering (DLS), static light scattering and turbidimetry revealed the existence of aggregates up to 4.0 M urea, without amyloid-like structure. Two monomeric conformational states were detected with intrinsic fluorescence, 8-anilinonaphthalene-1-sulfonate (ANS) binding and circular dichroism. These were further characterized in 7.5 M and 4.5 M urea using enzymatic activity measurements, tryptophan fluorescence quenching, DLS and nuclear magnetic resonance (NMR) and were found to consist of a largely disordered and a partially folded state, respectively, with the latter appearing stable, cooperative, fairly compact, non-active, α-helical, with largely buried hydrophobic residues. The persistence of a stable structure up to high concentrations of urea, in the absence of sequence characteristics typical of a high intrinsic aggregation propensity, explains the high tendency of this enzyme to form amyloid-like structures.The negative strand RNA virus family contains many human pathogens. Finding new antiviral drug targets against this class of human pathogens is one of the significant healthcare needs. Nucleocapsid proteins of negative strand RNA viruses wrap the viral genomic RNA and play essential roles in gene transcription and genome replication. Chandipura virus, a member of the Rhabdoviridae family, has a negative strand RNA genome. In addition to wrapping the genomic RNA, its nucleocapsid protein interacts with the positive strand leader RNA and plays a vital role in the virus life-cycle. We have designed a peptide, based on prior knowledge and demonstrated that the peptide is capable of binding specifically to the positive strand leader RNA. When the peptide was transported inside the cell, it inhibited viral growth with IC50 values in the low micromolar range. Given the widespread occurrence of leader RNAs in negative strand RNA viruses and its interaction with the nucleocapsid protein, it is likely that this interaction could be a valid drug target for other negative strand RNA viruses.In India, begomovirus infection causing tomato leaf curl disease (ToLCD) is a major constraint for tomato productivity. Here, we have identified two distinct monopartite begomovirus and betasatellite complexes causing ToLCD in the western part of India. A new monopartite begomovirus (Tomato leaf curl Mumbai virus, ToLCMumV) and betasatellite (Tomato leaf curl Mumbai betasatellite, ToLCMumB) were isolated from the Mumbai sample. A distinct Tomato leaf curl Gandhinagar virus (ToLCGanV) and Tomato leaf curl Gandhinagar betasatellite (ToLCGanB) were identified from the Gandhinagar sample. Both of the cloned begomoviruses were recombinants. The demonstration of systemic infection caused by begomovirus (ToLCGanV or ToLCMumV) alone in N. benthamiana and tomato (a virus resistant variety) emphasizes that they were monopartite begomoviruses. Co-inoculation of cognate begomovirus and betasatellite reduces the incubation period and increases symptom severity. Thus, Koch’s postulates were satisfied for these virus complexes. Further, an enhanced accumulation of ToLCGanV was detected in the presence of cognate ToLCGanB, however ToLCMumB did not influence the level of ToLCMumV in the agro-inoculated tomato plants. Our results indicate that the cloned viruses form potential virus resistance breaking disease complexes in India. This necessitates to investigate the spread of these disease complexes to major tomato growing regions in the country.
This randomised, controlled, analyst blind, crossover study aimed to evaluate and compare salivary fluoride and calcium ion concentration over 60 min following brushing with an assigned treatment and following an orange juice (OJ) or deionised (DI) water rinse 60 min post-brushing.
Study treatments, both containing 1150 ppm fluoride as NaF and 5% w/w KNO
, were the Test (including 1.2 % w/w cocamidopropyl betaine) and Comparator (including tetrasodium pyrophosphate and sodium lauryl sulphate) toothpastes. find more Twenty nine participants were randomised to treatment.
A sharp increase in salivary fluoride ion concentration immediately post-brushing with either toothpaste decreased over time. Fluoride concentration following Test toothpaste use was numerically higher than the Comparator at all timepoints, with a significant difference from 10 min post-brushing (p < .05). Following the 60 min rinse, there were no significant differences between the Test or Comparator + OJ groups in salivary fluoride concentrat in the oral environment, formulations can be developed that maximise retention of fluoride in the oral environment.Due to the increasing number of drugs and untested environmental compounds introduced into commercial use, there is recognition for a need to develop reliable and efficient screening methods to identify compounds that may adversely impact the nervous system. One process that has been implicated in neurodevelopment is neurite outgrowth; the disruption of which can result in adverse outcomes that persist later in life. Here, we developed a green fluorescent protein (GFP) labeled neurite outgrowth assay in a high-content, high-throughput format using induced pluripotent stem cell (iPSC) derived human spinal motor neurons and cortical glutamatergic neurons. The assay was optimized for use in a 1536-well plate format. Then, we used this assay to screen a set of 84 unique compounds that have previously been screened in other neurite outgrowth assays. This library consists of known developmental neurotoxicants, environmental compounds with unknown toxicity, and negative controls. Neurons were cultured for 40 h and then treated with compounds at 11 concentrations ranging from 1.