• Sloan Shapiro posted an update 6 months, 3 weeks ago

    Water level management is an effective tool for the ecological restoration of shallow lakes. In this study, we developed an ecologically-based approach to estimate the monthly suitable ecological water levels (EWLs). This approach took both the lake topographic features and aquatic plants’ growth characteristics into account. The aquatic vegetation coverage was used to characterize the degree of the lake ecological restoration. The relationship between water level and vegetation coverage was established. We chose the Tangxun Lake as a testbed, and the recommended lowest EWL was 16.6 m, as the minimum threshold for water level regulations. The results revealed that the predicted vegetation coverage decreased with the rise of water level during the germination period (February and March). To achieve the vegetation coverage goal of 30% and 50%, the lake’s water levels must be lowered to 17.1 m and 16.8 m respectively during germination. The EWLs were recommended to be low in spring and high in summer, which was matched with the natural water level regimes. The proposed approach can provide a reliable reference for water level regulation of shallow lakes especially the lakes with insufficient data.Biofilms are composed of microorganisms attached to a solid surface or floating on top of a liquid surface. They pose challenges in the field of medicine but can also have useful applications in industry. Regulation of biofilm growth is complex and still largely elusive. Oscillations are thought to be advantageous for biofilms to cope with nutrient starvation and chemical attacks. Recently, a minimal mathematical model has been employed to describe the oscillations in Bacillus subtilis biofilms. In this paper, we investigate four different modifications to that minimal model in order to better understand the oscillations in biofilms. Our first modification is towards making a gradient of metabolites from the center of the biofilm to the periphery. We find that it does not improve the model and is therefore, unnecessary. We then use realistic Michaelis-Menten kinetics to replace the highly simple mass-action kinetics for one of the reactions. Further, we use reversible reactions to mimic the diffusion in biofilms. As the final modification, we check the combined effect of using Michaelis-Menten kinetics and reversible reactions on the model behavior. We find that these two modifications alone or in combination improve the description of the biological scenario.Morphine and structurally-derived compounds are µ opioid receptor (µOR) agonists, and the most effective analgesic drugs. However, their usefulness is limited by serious side effects, including dependence and abuse potential. The N-substituent in morphinans plays an important role in opioid activities in vitro and in vivo. This study presents the synthesis and pharmacological evaluation of new N-phenethyl substituted 14-O-methylmorphinan-6-ones. Whereas substitution of the N-methyl substituent in morphine (1) and oxymorphone (2) by an N-phenethyl group enhances binding affinity, selectivity and agonist potency at the µOR of 1a and 2a, the N-phenethyl substitution in 14-methoxy-N-methylmorphinan-6-ones (3 and 4) converts selective µOR ligands into dual µ/δOR agonists (3a and 4a). Contrary to N-methylmorphinans 1-4, the N-phenethyl substituted morphinans 1a-4a produce effective and potent antinociception without motor impairment in mice. Using docking and molecular dynamics simulations with the µOR, we establish that N-methylmorphinans 1-4 and their N-phenethyl counterparts 1a-4a share several essential receptor-ligand interactions, but also interaction pattern differences related to specific structural features, thus providing a structural basis for their pharmacological profiles. The emerged structure-activity relationships in this class of morphinans provide important information for tuning in vitro and in vivo opioid activities towards discovery of effective and safer analgesics.Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression in response to plant stresses. Given the importance regulatory roles of lncRNAs, providing methods for predicting the function of these molecules, especially in non-model plants, is strongly demanded by researchers. Here, we constructed a reference sequence for lncRNAs in P. SU1498 solubility dmso vera (Pistacia vera L.) with 53220 transcripts. In total, we identified 1909 and 2802 salt responsive lncRNAs in Ghazvini, a salt tolerant cultivar, after 6 and 24 h salt treatment, respectively and 1820 lncRNAs in Sarakhs, a salt sensitive cultivar, after 6 h salt treatment. Functional analysis of these lncRNAs by several hybrid methods, revealed that salt responsive NAT-related lncRNAs associated with transcription factors, CERK1, LEA, Laccase genes and several genes involved in the hormone signaling pathways. Moreover, gene ontology (GO) enrichment analysis of salt responsive target genes related to top five selected lncRNAs showed their involvement in the regulation of ATPase, cation transporter, kinase and UDP-glycosyltransferases genes. Quantitative real-time PCR (qRT-PCR) experiment results of lncRNAs, pre-miRNAs and mature miRNAs were in accordance with our RNA-seq analysis. In the present study, a comparative analysis of differentially expressed lncRNAs and microRNA precursors between salt tolerant and sensitive pistachio cultivars provides valuable knowledge on gene expression regulation under salt stress condition.Stroke networks facilitate access to endovascular treatment (EVT) for patients with ischemic stroke due to large vessel occlusion. In this study we aimed to determine the safety of inter-hospital transfer and included all patients with acute ischemic stroke who were transferred within our stroke network for evaluation of EVT between 06/2016 and 12/2018. Data were derived from our prospective EVT database and transfer protocols. We analyzed major complications and medical interventions associated with inter-hospital transfer. Among 615 transferred patients, 377 patients (61.3%) were transferred within our telestroke network and had transfer protocols available (median age 76 years , 190 male, median baseline NIHSS score 17 , 246 drip-and-ship i.v.-thrombolysis). No patient suffered from cardio-respiratory failure or required emergency intubation or cardiopulmonary resuscitation during the transfer. Among 343 patients who were not intubated prior departure, 35 patients (10.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account