• Hess Marcussen posted an update 6 months ago

    Data on the association between chimeric antigen receptor (CAR)-T-cell kinetics and patient outcome in the nontrial setting are missing, mainly due to the lack of broadly available CAR-T-cell diagnostic quantification tools. We performed prospective quantification of axicabtagene ciloleucel (axi-cel) in 21 patients treated for aggressive B-cell lymphoma at our clinic. Median peak CAR-T-cell count was 16.14 CAR-T cells/µL. Patients with 16.14/μL or higher peak CAR-T cells (strong expanders) had more day-30 objective responses (91% vs 40%, P = .02). In univariate analysis, peak CAR-T cell ≥ 16.14 (P less then .001), normal platelet counts at start of lymphodepletion (P less then .001), no prior stem cell transplant (P = .04), and peak CAR-T cells as continuous variable (P = .03) were associated with better progression-free survival (PFS). After adjusting for platelet counts and prior stem cell transplantation, peak CAR-T cells below median was still associated with shorter PFS (relative risk, 0.15, 95% confidence interval, 0.04-0.59, P = .007). Low platelet counts also maintained significant impact on PFS. Our data demonstrate association of axi-cel levels and outcome in a nontrial setting and for the first time use a cutoff to segregate weak and strong expanders with respective outcomes.Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule layer, as well as inhibitory neurons in the molecular layer. Furthermore, subcellular characterization revealed FAT1 localization in neurites and soma of granule neurons, as well as being present in the synaptic plasma membrane and postsynaptic densities. Interestingly, FAT1 expression was decreased in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) from individuals with ASD. These findings suggest a novel role for FAT1 in postnatal development and may be particularly important for cerebellum function. As the cerebellum is one of the vulnerable brain regions in ASD, our study warrants further investigation of FAT1 in the disease etiology.Narrow distribution patterns of tropical Drosophila species are limited by lower resistance to cold or drought. click here In the invasive tropical Drosophila kikkawai, we tested whether developmental and adult acclimations at cooler temperatures could enhance its stress resistance level. Adult acclimation of winter collected body color morphs revealed a significant increase in the level of cold resistance. For light morph, its abundance during winter is not consistent with thermal-melanism hypothesis. However, higher cold acclimation capacity, as well as storage of energy metabolites could support its winter survival. In the wild-caught light and intermediate morphs, there is a lack of trade-off between cold and heat resistance but not in the case of dark morph. Developmental plasticity (15°C) resulted in the fivefold increase of cold survival at 0°C; and a twofold increase in desiccation resistance but a modest reduction (∼28-35%) in heat resistance as compared to morph strains reared at 25°C. Drought acclimation changes were significantly higher as compared with cold or heat pretreatment. We observed a trade-off between basal resistance and acclimation capacity for cold, heat, or drought resistance. For homeostatic energy balance, adult acclimation responses (cold versus drought; heat versus drought) caused compensatory plastic changes in the levels of proline or trehalose (shared patterns) but different patterns for total body lipids. In contrast, rapid cold or heat hardening-induced changes in energy metabolites were different as compared to acclimation. The ability of D. kikkawai to significantly increase stress tolerance through plasticity is likely to support its invasion potential.Secreted proteins are transported along intracellular route from the endoplasmic reticulum through the Golgi before reaching the plasma membrane. Small GTPase Rab and their effectors play a key role in membrane trafficking. Using confocal microscopy, we showed that MICAL-L1 was associated with tubulo-vesicular structures and exhibited a significant colocalization with markers of the Golgi apparatus and recycling endosomes. Super resolution STORM microscopy suggested at the molecular level, a very close association of MICAL-L1 and microdomains in the Golgi cisternae. Using a synchronized secretion assay, we report that the shRNA-mediated depletion of MICAL-L1 impaired the delivery of a subset of cargo proteins to the cell surface. The process of membrane tubulation was monitored in vitro, and we observe that recombinant MICAL-L1-RBD domain may contribute to promote PACSINs-mediated membrane tubulation. Interestingly, two hydrophobic residues at the C-terminus of MICAL-L1 appeared to be important for phosphatidic acid binding, and for association with membrane tubules. Our results reveal a new role for MICAL-L1 in cargo delivery to the plasma membrane.The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account