• Solis Tolstrup posted an update 6 months ago

    Using a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary phase transition in granular aggregates with varying disorder and their inverse porous structures obtained by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be understood in terms of the surface-surface correlation length with a connected path through the fluid domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas phase transition in these porous materials is of second order nature near capillary critical temperature, which is shown to represent a true critical temperature, i.e., independent of the degree of disorder and the nature of the solid matrix, discrete or continuous. The critical exponents estimated here from finite-size scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as hypothesized by F. Brochard and P.G. de Gennes, with the underlying random fields induced by local disorder in fluid-solid interactions.Particle dynamics in supercooled liquids are often dominated by stringlike motions in which lines of particles perform activated hops cooperatively. The structural features triggering these motions, crucial in understanding glassy dynamics, remain highly controversial. We experimentally study microscopic particle dynamics in colloidal glass formers at high packing fractions. With a small polydispersity leading to glass-crystal coexistence, a void in the form of a vacancy in the crystal can diffuse reversibly into the glass and further induces stringlike motions. In the glass, a void takes the form of a quasivoid consisting of a few neighboring free volumes and is transported by the stringlike motions it induces. selleck chemicals In fully glassy systems with a large polydispersity, similar quasivoid actions are observed. The mobile particles cluster into stringlike or compact geometries, but the compact ones can be further broken down into connected sequences of strings, establishing their general importance.We predict strong, dynamical effects in the dc magnetoresistance of current flowing from a spin-polarized electrical contact through a magnetic dopant in a nonmagnetic host. Using the stochastic Liouville formalism we calculate clearly defined resonances in the dc magnetoresistance when the applied magnetic field matches the exchange interaction with a nearby spin. At these resonances spin precession in the applied magnetic field is canceled by spin evolution in the exchange field, preserving a dynamic bottleneck for spin transport through the dopant. Similar features emerge when the dopant spin is coupled to nearby nuclei through the hyperfine interaction. These features provide a precise means of measuring exchange or hyperfine couplings between localized spins near a surface using spin-polarized scanning tunneling microscopy, without any ac electric or magnetic fields, even when the exchange or hyperfine energy is orders of magnitude smaller than the thermal energy.Molecular-scale dynamics in sub- to supercritical water is studied with inelastic x-ray scattering and molecular dynamics simulations. The obtained longitudinal current correlation spectra can be decomposed into two main components a low-frequency (LF), gaslike component and a high-frequency (HF) component arising from the O-O stretching mode between hydrogen-bonded molecules, reminiscent of the longitudinal acoustic mode in ambient water. With increasing temperature, the hydrogen-bond network diminishes and the spectral weight shifts from HF to LF, leading to a transition from liquid- to gaslike dynamics with rapid changes around the Widom line.We report an unconventional quantum spin Hall phase in the monolayer WTe_2, which exhibits hitherto unknown features in other topological materials. The low symmetry of the structure induces a canted spin texture in the yz plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized (2e^2/h) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multiprobe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.Interactions between fluids and elastic solids are ubiquitous in applications ranging from aeronautical and civil engineering to physiological flows. Here we study the pulsatile flow through a two-dimensional Starling resistor as a simple model for unsteady flow in elastic vessels. We numerically solve the equations governing the flow and the large-displacement elasticity and show that the system responds as a forced harmonic oscillator with nonconventional damping. We derive an analytical prediction for the amplitude of the oscillatory wall deformation, and thus the conditions under which resonances occur or vanish.We show that quantum dynamics of Bose-Einstein condensates in the weakly interacting regime can be geometrized by a Poincaré disk. Each point on such a disk represents a thermofield double state, the overlap between which equals the metric of this hyperbolic space. This approach leads to a unique geometric interpretation of stable and unstable modes as closed and open trajectories on the Poincaré disk, respectively. The resonant modes that follow geodesics naturally equate fundamental quantities including the time, the length, and the temperature. Our work suggests a new geometric framework to coherently control quantum systems and reverse their dynamics using SU(1,1) echoes. In the presence of perturbations breaking the SU(1,1) symmetry, SU(1,1) echoes deliver a new means to measure these perturbations such as the interactions between excited particles.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account