• Stephens Cormier posted an update 6 months, 1 week ago

    RNA targeting has gained traction over the past decade. It has become clear that dysregulation of RNA can be linked to many diseases, leading to a need for new scaffolds recognizing RNA specifically. Long noncoding RNAs are emerging as key controllers of gene expression and potential therapeutic targets. However, traditional targeting methods have overwhelmingly been focused on proteins. selleck inhibitor In this study, we used a protein computational tool and found several possible targetable pockets in a structurally characterized long noncoding RNA, MALAT1. Screening against those identified pockets revealed several hit compounds. We tested the binding of those compounds to MALAT1 RNA and tRNA as a negative control, using SPR. While several compounds were nonspecific binders, others were able to recognize MALAT1 specifically. One of them, MTC07, has an apparent affinity of 400.2 ± 14.4 μM. Although it has weak affinity, MTC07 is the first compound targeting MALAT1 originating from in silico docking.RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.Targeting RNAs using small molecules is an emerging field of medicinal chemistry and holds promise for the discovery of efficient tools for chemical biology. MicroRNAs are particularly interesting targets since they are involved in a number of pathologies such as cancers. Indeed, overexpressed microRNAs in cancer are oncogenic and various series of inhibitors of microRNAs biogenesis have been developed in recent years. Here, we describe the structure-based design of new efficient inhibitors of microRNA-21. Starting from a previously identified hit, we performed biochemical studies and molecular docking to design a new series of optimized conjugates of neomycin aminoglycoside with artificial nucleobases and amino acids. Investigation about the mode of action and the site of the interaction of the newly synthesized compounds allowed for the description of structure-activity relationships and the identification of the most important parameters for miR-21 inhibition.Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin’s assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin’s chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression. Due to their important activity in the fine-tuning of protein translation, abnormal expression of miRNAs has been linked to many human diseases, making the targeting of miRNAs attractive as a novel therapeutic strategy. Accordingly, researchers have been heavily engaged in the discovery of small molecule modulators of miRNAs. With an interest in the identification of new chemical space for targeting miRNAs, we developed a high-throughput screening (HTS) technology, catalytic enzyme-linked click chemistry assay (cat-ELCCA), aimed at the discovery of small molecule ligands for pre-miR-21, a miRNA that is frequently overexpressed in human cancers. From our HTS campaign, we found that natural products, a source of many impactful human medicines, may be a promising source of potential pre-miR-21-selective maturation inhibitors. Herein we describe our first efforts in natural product inhibitor discovery leading to the identification of a depsipeptide class of natural products as RNA-binding inhibitors of Dicer-mediated miRNA processing.Not too long ago, the concept of selectively targeting mRNA with small molecules was perceived as a formidable scientific challenge. The discovery of small molecule splicing modifiers and the development of risdiplam for the treatment of spinal muscular atrophy (SMA) have firmly established proof of concept for this exciting new platform and transformed a scientific curiosity into a viable technology to target disease. Today, several approaches to target mRNA with small molecules, supported by biophysical and screening methods, are in place to deliver new drugs with high therapeutic relevance.

    Using the MTN-020/ASPIRE HIV prevention trial as a motivating example, our objective is to construct a joint model for the HIV exposure process through vaginal intercourse and the time to HIV infection in a population of sexually active women. By modeling participants’ HIV infection in terms of exposures, rather than time exposed, our aim is to obtain a valid estimate of the per-act efficacy of a preventive intervention.

    Within the context of HIV prevention trials, in which the frequency of sex acts is self-reported periodically by the participants, we model the exposure process of the trial participants with a non-homogeneous Poisson process. This approach allows for variability in the rate of sexual contacts between participants as well as variability in the rate of sexual contacts over time. The time to HIV infection for each participant is modeled as the time to the exposure that results in HIV infection, based on the modeled sexual contact rate. We propose an empirical Bayes approach for estimation.

    We report the results of a simulation study where we evaluate the performance of our proposed approachandcompareittothetraditionalapproachofestimatingtheoverallreductioninHIVincidenceusing a Proportional Hazards Cox model.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account