• Kock McNulty posted an update 6 months, 2 weeks ago

    Aspen Pressure Solid wood Fibers Include β-(1—> 4)-Galactans as well as Acidic Arabinogalactans Kept simply by Cellulose Microfibrils within Gelatinous Walls.

    The degradation pathways of p-CNB were proposed through GC/MS spectra. The acute toxicity, bioaccumulation factor and mutagenicity of identified intermediates were reduced after PEC degradation by g-C3N4/TNAs photoelectrodes. The Z-scheme g-C3N4/TNAs provided an efficient approach for simultaneous dechlorination and mineralization of refractory pollutants.A single exposure to glyphosate or antibiotic may facilitate cyanobacterial growth at currently reported concentrations due to hormesis. However, the influence of these contaminants on cyanobacteria under combined exposure conditions has not been reported. In this study, proteomic mechanisms for the combined effects of glyphosate and a quaternary antibiotic mixture of amoxicillin, sulfamethoxazole, tetracycline, and ciprofloxacin in a dominant bloom-forming cyanobacterium (Microcystis aeruginosa) were investigated and compared with those for single exposure to glyphosate. The growth rate of M. aeruginosa, photosynthetic activity indicated by Fv/Fm, and microcystin production ability showed a typical U-shaped hormetic dose-response to glyphosate exposure. Upregulated proteins related to photosynthesis and biosynthesis, as well as increased photosynthetic activity, were responsible for the stimulated growth induced by 0.1-5 μg/L glyphosate, while the upregulation of mcyB protein contributed to increased microcystin synthesis in glyphosate-treated cells. The presence of 0.04-0.2 μg/L mixed antibiotics significantly (p less then 0.05) enhanced the stimulation effects of glyphosate. Combined exposure to glyphosate and mixed antibiotics promoted microcystin synthesis through the upregulation of six microcystin synthesis regulatory proteins (mcyC, mcyF, mcyG, mcyI, MAE_56520, and ntcA) and stimulated cyanobacterial growth through the upregulation of proteins involved in photosynthesis, cell division, carbon fixation, pentose phosphate, translation, and chlorophyll synthesis. Combined exposure to glyphosate and antibiotic contaminants promoted cyanobacterial growth at no-effect concentrations of single exposure (0.04 μg/L for mixed antibiotics; 0.05, 10 and 100 μg/L for glyphosate), suggesting an increased threat from combined contamination to aquatic ecosystems through promoting the formation of cyanobacterial bloom.As an emerging pollutant in terrestrial ecosystem, studies on the effects of microplastics on the gut microbiota of terrestrial organisms are relatively little even though gut microbiota is closely related to host health, metabolism and immunity as well as soil decomposition processes. In this study, earthworms Metaphire guillelmi were exposed to soil amended with 0.25% (w/w) high-density polyethylene (HDPE, 25 μm) or polypropylene (PP, 13 μm) microplastics for 28 d. The ingestion of HDPE and PP microplastics by M. guillelmi was clearly demonstrated by Nile Red fluorescence staining method. There were significant differences for the microbiota between the M. guillelmi gut and the surrounding soil, which may result from the influence of specific conditions in the gut habitat. HDPE and PP microplastics exposure did not induce gut microbiota dysbiosis in M. guillelmi. LY 3200882 However, PP microplastics exposure significantly reduced bacterial diversity and altered bacterial community structure in the soil. Specifically, the relative abundance of Aeromonadaceae and Pseudomonadaceae significantly increased while the relative abundance of Nitrososphaeraceae and two unidentified families affiliated with Proteobacteria significantly decreased. This study broadens our understanding of the ecotoxicity of microplastics on the soil and gut microbiota of terrestrial organisms.This study evaluated removal efficiencies of six contaminants of emerging concern (CECs) in floating treatment wetland (FTW) mesocosms established with either Japanese Sweetflag (Acorus gramineus Sol. ex Aiton) or canna lilies (Canna Hybrida L. ‘Orange King Humbert’). The CECs included acetaminophen (APAP), atrazine (ATZ), carbamazepine (CBZ), perfluorooctanoic acid (PFOA), sulfamethoxazole (SMX), and 17β-estradiol (E2). Each treatment was planted with different numbers of plants (i.e., 0, 10, 15, and 20), and the experiments lasted for 17 weeks. Dissipation of CECs was greater in planted treatments than in non-planted controls, and the planting number had little effect on dissipation of CECs. All residues of APAP and E2 dissipated rapidly within 2 weeks in all planted treatments. At the end of the experiment, residues of ATZ and SMX completely dissipated in the canna treatments, but not in the sweetflag treatments (75.8-87.6% and 96.3-97.1%, respectively). During the 17 week study, moderate dissipation of CBZ was observed in treatments including cannas (79.5-82.6%) and sweetflag (69.4-82.3%), while less dissipation was observed for PFOA (9.0-15.0% with sweetflag and 58.4-62.3% with cannas). Principal component analysis indicates that aqueous persistency of CECs and species of plants used influenced the dissipation of CECs in FTWs. Of the two species evaluated, canna was the most promising plant species for FTW systems designed to remove these CECs from surface water.Hexabromocyclododecanes (HBCDs) were used as flame-retardants until their ban in 2013. Among the 16 stereoisomers known, ε-HBCD has the highest symmetry. This makes ε-HBCD an interesting substrate to study the selectivity of biotransformations. We expressed three LinA dehydrohalogenase enzymes in E. LY 3200882 coli bacteria, two wild-type, originating from Sphingobium indicum B90A bacteria and LinATM, a triple mutant of LinA2, with mutations of L96C, F113Y and T133 M. These enzymes are involved in the hexachlorocyclohexane (HCH) metabolism, specifically of the insecticide γ-HCH (Lindane). We studied the reactivity of those eight HBCD stereoisomers found in technical HBCD. Furthermore, we compared kinetics and selectivity of these LinA variants with respect to ε-HBCD. LC-MS data indicate that all enzymes converted ε-HBCD to pentabromocyclododecenes (PBCDens). Transformations followed Michaelis-Menten kinetics. Rate constants kcat and enzyme specificities kcat/KM indicate that ε-HBCD conversion was fastest and most specific with LinA2.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account