-
Wilkerson Rodriguez posted an update 6 months ago
The results reveal that fiscal policy instruments, per capita gross domestic product, FDI, and CO2 emissions show a strong correlation in the industrial, electrical, and transportation sectors. Furthermore, it is shown that public spending is a more reliable tool to reduce CO2 emissions in the transportation and industrial sectors in the BRI region. This study provides useful information for policy-makers on taking preventive and corrective measures to reduce CO2 emissions in different sectors and promote sustainable development.Although biochar (BC) has been widely used to adsorb pollutants in environment due to its natural and green characteristics, the structural defects of BC limit the ability to remove various environmental pollutants in aqueous solution. In this study, oxidized biochar (OBC) and sulfhydryl biochar (SBC) derived from pomelo peel (PP) were prepared through an oxidation and esterification reaction. BC and modified BC were used for the removal of methylene blue (MB), Cd2+, and phenanthrene (PHE) in aqueous solution. The adsorption behavior and efficiency toward different types of pollutants were studied by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman, X-ray photoelectron spectroscopy (XPS), kinetics, and isotherm model fitting. The results showed that the change of pH had great effect on MB and Cd2+ adsorption, but not on PHE. SBC not only possessed the newly formed sp2-hybridized domains with easy access to aromatic pollutants but also had multiple functional groups (-COOH, -OH, -SH, -NH2) that provided adsorption sites for positively charged pollutants. SBC was more flexible and efficient in purifying pollutants compared to BC and OBC, with the saturated adsorption capacities of MB (209.16 mg/g), Cd2+ (786.19 mg/g), and PHE (521.58 mg/g). Moreover, the adsorption kinetic and isotherms fitting showed that the adsorption mechanisms were closely related to the structure of biochar and the properties of pollutants, including π-π interaction, surface charge, electrostatic interaction, surface functional groups, and Van der Waals force. In addition, the analysis of structure-function relationship demonstrated the enhanced hydrophilicity and the easy exposure of the binding sites on OBC and SBC. Hence, it was significantly effective to regulate microstructure and interfacial properties to promote its adsorption behaviors of biochar.The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into aquatic ecosystems from natural and anthropogenic sources. BiP Inducer X solubility dmso Metals are highly persistent and toxic substances in trace amounts and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic pigments were gradually reduced (~32-100% reduction) in a dose-dependent manner. Protein content was initially increased during acute (~8-12%) and chronic (~57-80%) exposure and decreased (~44-56%) at higher concentration of the two metals (80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58-129%) followed by a gradual reduction (~3.7-79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to 1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal contaminants into the aquatic ecosystems.Based on the research background of the new economic norm and the construction of “non-waste city” in China, this paper studies the coordinated development between the industrial green development system and the regional “non-waste” system of the Yangtze River Economic Zone. First, using the data from 11 provinces from 2013 to 2017 as samples, the comprehensive evaluation index systems for the industrial green development system and the regional “non-waste” system are constructed, respectively. Then, considering the multi-source heterogeneous characteristics of the evaluation index data, the two-tuple linguistic entropy weight method, and gray relational analysis method are applied to filter the evaluation indexes and determine the index weights respectively. Third, combined with the dynamic TOPSIS idea, a new improved coupling coordination degree model is proposed to study the coordination development between the two systems. Finally, an empirical analysis is made, and the result shows that the overall degree of coupling coordination of the two systems shows a fluctuating upward trend. Moreover, the provinces are mainly low-level coupling coordination, and the factors that are hindered in various regions are different.More than a century ago, Edward W. Nelson and Edward A. Goldman spent 14 years (1892-1906) traveling across much of Mexico in one of the most critical biological expeditions ever undertaken by two naturalists. This long-term survey was a cornerstone in Mexican mammalogy development; however, their specific role in discovering taxa that were practically unknown before the expedition is not yet necessarily recognized. In a time when the historical aspect of knowledge on mammals is being ignored for the new generations of mammalogists, a detailed analysis of the legacy of the survey is essential. Here I focus on shrews (Eulipotyphla, Soricidae) to analyze how the fieldwork and the specimens they collected have contributed to the current knowledge of shrews in the country. Nelson and Goldman collected 474 specimens of shrews, representing 31 of the 40 species that have currently been recognized. This collection has been key to building taxonomic, evolutionary, and biogeographic knowledge of shrews in the country.