-
Kessler Midtgaard posted an update 6 months, 3 weeks ago
To exploit this property, we fabricated Au nanorod-quantum dot architectures using linkers of varying lengths, and measured the light induced temperature change increasing more rapidly closer to the surface of an Au nanorod. We also compared the effect of Au nanorod coatings and found that silica coating leads to higher overall temperatures compared to organic stabilized Au nanorods.Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics-biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem-through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.This study presents the synthesis of a series of new tetra-substituted phthalocyanines bearing 3,5-bis(trifluoromethyl)phenoxy groups at non-peripheral positions. The resulting macromolecules were characterized by performing different spectroscopic methods including 1H NMR, UV-Vis, FT-IR, and mass spectroscopy. In this study, the synergistic effect of phthalocyanines used as colorants in ink formulas with other chemicals available was probed for the first time. Selpercatinib manufacturer The synergistic effect of methyl laurate on the biological and antioxidant activities of the compounds (2-5) was investigated. Moreover, the therapeutic properties of the complexes (3, 6, and 7) were investigated using photochemical methods. Upon comparison, complex 7 (ΦΔ = 0.42) was found to be more effective than complex 6 (ΦΔ = 0.40) and complex 3 (ΦΔ = 0.27) in terms of producing singlet oxygen. The results confirmed that the heavy atom effect improves the therapeutic effects.We study the temperature-dependence of critical Casimir interactions in a critical micellar solution of the nonionic surfactant C12E5 dissolved in water. Experimentally, this is achieved with total internal reflection microscopy (TIRM) which measures the interaction between a single particle and a flat wall. For comparison, we also studied the pair interactions of a two dimensional layer of colloidal particles in the identical micellar system which yields good agreement with the TIRM results. Although, at the surfactant concentration considered here, the fluid forms a dynamical network of wormlike micelles whose structure is considerably more complex than that of simple critical molecular fluids, the temperature-dependence of the measured interactions is – for surface-to-surface distances above 160 nm – in excellent quantitative agreement with theory. Below 160 nm, deviations arise which we attribute to the adsorption of micelles to the interacting surfaces.A novel and straightforward intramolecular cyclization of glycine derivatives to 2-substituted benzoxazoles through copper-catalyzed oxidative C-H/O-H cross-coupling was described. A variety of glycine derivatives involving short peptides underwent cross-dehydrogenative-coupling readily to afford diverse 2-substituted benzoxazoles. The synthetic method has the advantages of simple operation, broad substrate scope and mild reaction conditions, thus providing an alternative effective approach for benzoxazole construction.A recent surface rheological study has shown that aqueous solutions of α-cyclodextrin (αCD) with anionic surfactants (S) display a remarkable viscoelasticity at the liquid/air interface, which has not been observed in similar systems. The dilatational modulus is various orders of magnitude larger than those for the binary mixtures αCD + water and S + water. The rheological response has been qualitatively related to the bulk distribution of species, the 2 1 inclusion complexes (αCD2 S) playing a fundamental role. In this work, we have developed a model that considers dipole-dipole interactions between 2 1 inclusion complexes ordered on the liquid/air interface. When the model is applied to the specific experimental conditions, the dependencies on concentration and temperature of the dilatational modulus and the surface tension were found to be in excellent agreement with the data, indicating clearly that dipole-dipole interactions determine and control the rheological behavior of the interface.Ferronematics (FNs) are suspensions of magnetic nanoparticles in nematic liquid crystals (NLCs). They have attracted much experimental attention, and are of great interest both scientifically and technologically. There are very few theoretical studies of FNs, even in equilibrium. In this paper, we study the non-equilibrium phenomenon of domain growth after a thermal quench (or coarsening) in this coupled system. Our modeling is based on coupled time-dependent Ginzburg-Landau (TDGL) equations for two order parameters the LC tensor order parameter Q, and the magnetization M. We consider both shallow and deep quenches from a high-temperature disordered phase. The system coarsens by the collision and annihilation of topological defects. We focus on slaved coarsening, where a disordered Q (or M) field is driven to coarsen by an ordered M (or Q) field. We present detailed results for the morphologies and growth laws, which exhibit unusual features purely due to the magneto-nematic coupling. To the best of our knowledge, this is the first study of non-equilibrium phenomena in FNs.