• Rosendal Wolff posted an update 6 months, 3 weeks ago

    Many classes of key functional proteins such as transcription factors or cell cycle proteins are present in the proteome at a very low concentration. These low-abundance proteins are almost entirely invisible to systematic quantitative analysis by classical data dependent proteomics methods (DDA). Moreover, DDA runs in shotgun proteomics experiments are plenty of missing values among the replicates due to the stochastic nature of the acquisition method, thus hampering the robustness of the quantitative analysis. Here, we have overcome these obstacles designing a robust workflow named missing value monitoring (MvM) in order to follow low abundance proteins dynamics.Cross-linking, in general, involves the covalent linkage of two amino acid residues of proteins or protein complexes in close proximity. Mass spectrometry and computational analysis are then applied to identify the formed linkage and deduce structural information such as distance restraints. Quantitative cross-linking coupled with mass spectrometry is well suited to study protein dynamics and conformations of protein complexes. The quantitative cross-linking workflow described here is based on the application of isotope labelled cross-linkers. Proteins or protein complexes present in different structural states are differentially cross-linked using a “light” and a “heavy” cross-linker. The intensity ratios of cross-links (i.e., light/heavy or heavy/light) indicate structural changes or interactions that are maintained in the different states. These structural insights lead to a better understanding of the function of the proteins or protein complexes investigated. The described workflow is applicable to a wide range of research questions including, for instance, protein dynamics or structural changes upon ligand binding.The use of stable isotope-labeled standards (SIS) is an analytically valid means of quantifying proteins in biological samples. The nature of the labeled standards and their point of insertion in a bottom-up proteomic workflow can vary, with quantification methods utilizing curves in analytically sound practices. A promising quantification strategy for low sample amounts is external standard addition (ExSTA). In ExSTA, multipoint calibration curves are generated in buffer using serially diluted natural (NAT) peptides and a fixed concentration of SIS peptides. Equal concentrations of SIS peptides are spiked into experimental sample digests, with all digests (control and experimental) subjected to solid-phase extraction prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Endogenous peptide concentrations are then determined using the regression equation of the standard curves. Given the benefits of ExSTA in large-scale analysis, a detailed protocol is provided herein for quantifying a multiplexed panel of 125 high-to-moderate abundance proteins in undepleted and non-enriched human plasma samples. The procedural details and recommendations for successfully executing all phases of this quantification approach are described. As the proteins have been putatively correlated with various noncommunicable diseases, quantifying these by ExSTA in large-scale studies should help rapidly and precisely assess their true biomarker efficacy.Here, we describe a proteomic pipeline to use a human microglial cell line as a biological model to study schizophrenia. In order to maximize the proteome coverage, we apply two-dimensional liquid chromatography coupled with ultra-definition MSE mass spectrometry (LC-UDMSE) using a data-independent acquisition (DIA) approach, with an optimization of drift time collision energy.Over the past two decades, unbiased data-independent acquisition (DIA) approaches have gained increasing popularity in the bottom-up proteomics field. Here, we describe an ion mobility separation enhanced DIA workflow for large-scale label-free quantitative proteomics studies where starting material is limited. We set a special focus on the single pot solid-phase-enhanced sample preparation (SP3) protocol, which is well suited for the processing of quantity-limited samples.Data-independent acquisition (DIA) has recently developed as a powerful tool to enhance the quantification of peptides and proteins within a variety of sample types, by overcoming the stochastic nature of classical data-dependent approaches, as well as by enabling the identification of all peptides detected in a mass spectrometric event. Here, we describe a workflow for the establishment of a sample-fitting DIA method using Spectronaut Pulsar X (Biognosys, Switzerland).Cells secrete proteins to communicate with their environment. Therefore, it is interesting to characterize the proteins which are released from cells under certain experimental conditions the so-called secretome. Here, often proteins from conditioned medium of cultured cells are analyzed, but these additionally might include also contaminating proteins of serum that have not been sufficiently removed or proteins from dying cells. this website To provide high-quality secretome data and minimize potential contaminants, we describe a quantitative comparison of conditioned medium and the cellular proteome. The described workflow comprises cell cultivation, sample preparation, and final data analysis which is based on the comparison of data from label-free mass spectrometric quantification of proteins from the conditioned medium with corresponding cellular proteomes enabling the detection of bona fide secreted proteins.A label-free approach based on a highly reproducible and stable workflow allows for quantitative proteome analysis . Due to advantages compared to labeling methods, the label-free approach has the potential to measure unlimited samples from clinical specimen monitoring and comparing thousands of proteins. The presented label-free workflow includes a new sample preparation technique depending on automatic annotation and tissue isolation via FTIR-guided laser microdissection, in-solution digestion, LC-MS/MS analyses, data evaluation by means of Proteome Discoverer and Progenesis software, and verification of differential proteins. We successfully applied this workflow in a proteomics study analyzing human cystitis and high-grade urothelial carcinoma tissue regarding the identification of a diagnostic tissue biomarker. The differential analysis of only 1 mm2 of isolated tissue cells led to 74 significantly differentially abundant proteins.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account