• McCullough Thomas posted an update 6 months, 2 weeks ago

    X-ray absorption spectroscopy and X-ray fluorescence microscopy are two synchrotron-based techniques frequently deployed either individually or in tandem to investigate the fates of metallodrugs and their biotransformation products in physiologically relevant sample material. These X-ray methods confer advantages over other analytical techniques in that they are nondestructive and require minimal chemical or physical manipulation of the sample before analysis, conserving both chemical and spatial information of the element(s) under investigation. In this review, we present selected examples of the use of X-ray absorption spectroscopy and X-ray fluorescence microscopy in studies of metallodrug speciation and localisation in vivo, in cell spheroids and in intact tissues and organs, and offer recent highlights in the advances of these techniques as they pertain to research on metallodrug action.Banhahoobak-tang is the most prescribed herbal drug in East Asia when individuals experience sudden symptoms such as sore throat or neurological symptoms. The low toxicity and high in-vivo safety of this herbal medicine has made it more attractive to patients, and it has recently been formulated as tablets. In addition, Banhahoobak-tang tablets are registered as health insurance drugs in South Korea, and clinical prescriptions and demand are increasing. However, there are very few clinical trial data as well as very little accurate content analysis and results for Banhahoobak-tang tablets. The purpose of this study was to perform in-vitro and in-vivo studies on Banhahoobak-tang tablets, including content analysis, pharmacokinetics in humans, and plasma protein binding. For this study, a UPLC-ESI-MS/MS method with polarity switching was developed for simultaneous analysis of 18 components of Banhahoobak-tang. To separate the analytes, a C8 reverse-phase column was used as the stationary phase, 0.1 % aqueous formic acid and acetonitrile as the mobile phase, and ionization and multiple reaction monitoring for quantification. The developed method was able to isolate and quantify the 18 components with good sensitivity and selectivity and was fully validated according to international analytical standards. Stability tests were also conducted on the analytes. Finally, the method was applied to in-vitro and in-vivo studies of Banhahoobak-tang tablets, and the tablet components were 52.49 ng/g to 91.00 μg/g on average. The detected components showed rapid oral absorption in humans as well as high plasma protein binding ratio overall. These results and methods can be useful not only for effectiveness and safety evaluation but also for quality control of Banhahoobak-tang tablets.The main goal of this work was to test the ability of vibrational spectroscopy techniques to differentiate between different polymorphic forms of fluconazole in pharmaceutical products. These are mostly manufactured with fluconazole as polymorphic form II and form III. click here These crystalline forms may undergo polymorphic transition during the manufacturing process or storage conditions. Therefore, it is important to have a method to monitor these changes to ensure the stability and efficacy of the drug. Each of FT-IR or FT-NIR spectra were associated to partial least squares-discriminant analysis (PLS-DA) for building classification models to distinguish between form II, form III and monohydrate form. The results has shown that combining either FT-IR or FT-NIR to PLS-DA has a high efficiency to classify various fluconazole polymorphs, with a high sensitivity and specificity. Finally, the selectivity of the PLS-DA models was tested by analyzing separately each of three following samples by FT-IR and FT-NIR lactose monohydrate, which is an excipient mostly used for manufacturing fluconazole pharmaceutical products, itraconazole and miconazole. These two last compounds mimic potential contaminants and belong to the same class as fluconazole. Based on the plots of Hotelling’s T² vs Q residuals, pure compounds of miconazole and itraconazole, that were analyzed separately, were significantly considered outliers and rejected. Furthermore, binary mixtures consist of fluconazole form-II and monohydrate form with different ratios were used to test the suitability of each technique FT-IR and FT-NIR with PLS-DA to detect minimum contaminant or polymorphic conversion from a polymorphic form to another using also the plots of Hotelling’s T² vs Q residuals.The number of approved peptide therapeutics has increased significantly in recent years. Peptide therapeutics have many advances over small molecule drugs, such as higher affinity to target and lower toxicity profiles. Although peptide-like drugs are mainly metabolized/catabolized in the body for smaller peptides and amino acids, metabolite identification still has an essential part of in their development, especially if their structure contains modified amino acids, and also to identify the metabolic soft spots enabling modification to more stable sequence. The use of human derived in vitro systems is an important tool when investigating metabolism of peptide drugs, and comparison of results by various hepatic systems was investigated here. Peptides were incubated in several different in vitro human liver-derived subcellular and cellular incubation systems, i.e. liver S9 fraction, suspended cryo-preserved human primary hepatocytes and plated Upcyte hepatocytes. Samples were collected at different time pointstabolism with hepatocytes, in comparison to CYP-mediated processes.

    The present COVID-19 pandemic has prompted worldwide repurposing of drugs. The aim of the present work was to develop and validate a two-dimensional isotope-dilution liquid chromatrography tandem mass spectrometry (ID-LC-MS/MS) method for accurate quantification of remdesivir and its active metabolite GS-441524, chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin in serum; drugs that have gained attention for repurposing in the treatment of COVID-19.

    Following protein precipitation, samples were separated with a two-dimensional ultra-high performance liquid chromatography (2D-UHPLC) setup, consisting of an online solid phase extraction (SPE) coupled to an analytical column. For quantification, stable isotope-labelled analogues were used as internal standards for all analytes. The method was validated on the basis of the European Medicines Agency bioanalytical method validation protocol.

    Detuning of lopinavir and ritonavir allowed simultaneous quantification of all analytes with different concentration ranges and sensitivity with a uniform injection volume of 5 μL.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account