-
Franklin Stage posted an update 6 months, 1 week ago
87, 0.83 and 0.80, respectively. Pooled specificity was 0.84, 0.79 and 0.74. The DORs were 35, 18 and 11, respectively. The AUC for urine, serum and plasma NGAL were 0.92, 0.87 and 0.84, respectively. Urine NGAL presented superior performance for the diagnosis of AKI with the highest AUC and other diagnostic accuracy values, compared with serum and plasma NGAL. Further studies are needed to clarify the controversial issue between the usefulness of serum and plasma NGAL.Chronic fatigue is frequently accompanied by decreased learning and memory capabilities. Schizantherin A (SCA) is one of the main active monomer components in Schisandra chinensis lignans. selleck products In the present study, a chronic fatigue mouse model was established using the exhausted swimming approach to investigate the effects of SCA on learning and memory and its associated mechanism of action. Learning and memory abilities were tested by step through tests and water maze methods. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in hippocampal tissue were measured by corresponding assays. The effect of SCA on the expression of kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Bcl2, Bax and cleaved caspase-3 were determined by western blot. The present results showed that SCA can improve the learning and memory capabilities of chronic fatigue mice. SCA was found to increase the activities of SOD and CAT in addition to increasing the levels of GSH but reduced the levels of MDA in hippocampus tissues. Furthermore, SCA treatment downregulated the protein expression levels of Keap1, Bax and cleaved caspase-3 and upregulated the protein expression levels of Nrf2, HO1 and Bcl2 in the hippocampus. These results suggested that modulations in the Nrf2-Keap1-antioxidant response element pathway, anti-oxidative and anti-apoptosis effects are the causes underlying the improvements from SCA treatment on the learning and memory abilities of chronic fatigue mice.Hypertrophic scars (HSs) are characterized by excessive extracellular matrix deposition and excessive growth of dense fibrous tissues. MicroRNAs (miRNAs/miRs) serve key roles in HS formation. The present study investigated the expression, role and mechanism underlying the effects of miR-497-5p in HS formation. miR-497-5p expression was detected via reverse transcription-quantitative PCR. The association between miR-497-5p and Smad7 was analyzed using TargetScan and luciferase reporter assays. Protein expression levels of extracellular matrix markers were measured via western blotting. Cell viability and apoptosis were determined using the Cell Counting Kit-8 assay and flow cytometry, respectively. The results suggested that miR-497-5p expression was upregulated in HS tissues and human HS fibroblasts (hHSFs) compared with healthy control skin tissues and CCC-ESF-1 cells, respectively. Smad7 was directly targeted by miR-497-5p, and was downregulated in HS tissues and hHSFs compared with healthy control skin tissues and CCC-ESF-1 cells, respectively. Moreover, Smad7 upregulation significantly inhibited cell viability, decreased extracellular matrix deposition and induced apoptosis in hHSFs compared with the control-plasmid group. Moreover, the results indicated that, compared with the inhibitor control group, miR-497-5p inhibitor inhibited cell viability, decreased extracellular matrix deposition and induced apoptosis in hHSFs, which were significantly reversed by Smad7 knockdown. In conclusion, the results indicated that miR-497-5p downregulation repressed HS formation by inhibiting extracellular matrix deposition and hHSF proliferation at least partly by targeting Smad7.Insulin-like growth factor 2 (IGF-2) is a growth factor that is involved in various functions of cells, including stem cells. The effects of IGF-2 on the cellular viability and osteogenic differentiation of stem cell spheroids were investigated in the present study. Stem cell spheroids were formed using concave microwells in the presence of IGF-2 at final concentrations of 0, 10 and 100 ng/ml. Cellular viability was measured qualitatively using a microscope and quantitatively using an assay kit based on water-soluble tetrazolium salt. The level of alkaline phosphatase activity, and an anthraquinone dye assay for calcium deposit evaluation, were used to assess osteogenic differentiation. A quantitative PCR analysis was conducted to evaluate the expression of Runx2 and Col1. Spheroid formation was noticed on day 1 in the microwells, and the spheroidal shape was maintained up to day 7. The cell viability assay values for IGF-2 at 0, 10 and 100 ng/ml at day 1 were 0.193±0.002, 0.191±0.002 and 0.201±0.006, respectively (P>0.05). The absorbance values at 405 nm for the alkaline phosphatase activity assays on day 21 were 0.221±0.006, 0.375±0.010 and 0.280±0.015 for IGF-2 at 0, 10 and 100 ng/ml, respectively. There were significantly higher values for IGF-2 in the 10 and 100 ng/ml groups when compared with the control (P less then 0.05). Significantly higher Alizarin red staining was noted for IGF-2 in the 10 ng/ml group when compared with the unloaded control at day 21 (P less then 0.05). Quantitative PCR revealed that mRNA levels of Runx2 and Col1 were significantly higher at 100 ng/ml on day 7. Conclusively, the present study demonstrated that the application of IGF-2 increased alkaline phosphatase activity, Alizarin red staining, and Runx2 and Col1 expression of stem cell spheroids.Sodium glucose cotransporter-2 (SGLT2) is a sodium-dependent glucose transporter responsible for renal absorption of glucose. Dapagliflozin is an SGLT2 inhibitor used in patients with type 1 diabetes to promote urinary glucose excretion, but to date, randomized controlled trials (RCTs) to evaluate the effect of this drug in this disease have not been systematically evaluated. Therefore, the aim of the present study was to evaluate the efficacy and safety of dapagliflozin, as an adjuvant therapy to insulin, in the treatment of type 1 diabetes mellitus through a systematic review and meta-analysis. The Cochrane Library Database, Medline and Embase databases were used to search articles published between January 1st 2004 and February 5th 2020 with no language restrictions relating to RCTs. After extracting the data, the quality of the RCTs was evaluated and the data were statistically analyzed. A total of 4 RCTs with 1,691 participants were included. Dapagliflozin resulted in decreased glycosylated hemoglobin A1c (0.