-
Humphrey Secher posted an update 6 months, 3 weeks ago
Taken together, the data reinforce the assumption that ABCB1 plays a major role in the kinetics of CDR, and their levels of expression are in the dependence of the circuitry of cell miRNAs.In hostile and remote environments, such as mountains, forests or suburban areas, traditional communications may not be available, especially after a disaster, such as a flood, a forest fire or an earthquake. In these situations, the wireless networks may become congested or completely disrupted and may not be adequate to support the traffic generated by rescuers. It is also considered as the key tool in Corona Virus (COVID-19) battle. Moreover, the conventional approaches with fixed gateways may not work either, and this might lead to decoding errors due to the large distance between mobile nodes and the gateway. To avoid the decoding errors and improve the reliability of the messages, we propose to use intermediate Unmanned Aerial Vehicles (UAVs) to transfer messages from ground-based Long Range (LoRa) nodes to the remote base station (BS). Specifically, this UAV-enabled LoRa architecture is based on the ad hoc WiFi network, wherein, UAVs act as relays for the traffic generated between LoRa nodes and BS. To make the architecture more efficient, a distributed topology control algorithm is also proposed for UAVs. The algorithm is based on virtual spring forces and movement prediction technique that periodically updates the UAV topology to adapt to the movement of the ground-based LoRa nodes that move on the surface. The simulation results show the feasibility of the proposed approach for packet reception rate and average delay quality of service (QoS) metrics. It is observed that the mechanisms implemented in a UAV-enabled LoRa network effectively help to improve the packet reception rate with nominal buffer delays.Alzheimer’s disease (AD) is a serious health concern, affecting millions of people globally, which leads to cognitive impairment, dementia, and inevitable death. There is still no medically accepted treatment for AD. selleck chemicals Developing therapeutic treatments for AD is an overwhelming challenge in the medicinal field, as the exact mechanics underlying its devastating symptoms is still not completely understood. Rather than the unknown mechanism of the disease, one of the limiting factors in developing new drugs for AD is the blood-brain barrier (BBB). A combination of nanotechnology with fluorinated molecules is proposed as a promising therapeutic treatment to meet the desired pharmacokinetic/physiochemical properties for crossing the BBB passage. This paper reviews the research conducted on fluorine-containing compounds and fluorinated nanoparticles (NPs) that have been designed and tested for the inhibition of amyloid-beta (Aβ) peptide aggregation. Additionally, this study summarizes fluorinated molecules and NPs as promising agents and further future work is encouraged to be effective for the treatment of AD.This article proposes a vision-based method of determining in which of the three states, defined in the spin recovery process, is an aircraft. The correct identification of this state is necessary to make the right decisions during the spin recovery maneuver. The proposed solution employs a keypoints displacements analysis in consecutive frames taken from the on-board camera. The idea of voting on the temporary location of the rotation axis and dominant displacement direction was used. The decision about the state is made based on a proposed set of rules employing the histogram spread measure. To validate the method, experiments on flight simulator videos, recorded at varying altitudes and in different lighting, background, and visibility conditions, were carried out. For the selected conditions, the first flight tests were also performed. Qualitative and quantitative assessments were conducted using a multimedia data annotation tool and the Jaccard index, respectively. The proposed approach could be the basis for creating a solution supporting the pilot in the process of aircraft spin recovery and, in the future, the development of an autonomous method.Rhizoctonia cerealis is the causal pathogen of the devastating disease, sharp eyespot, of the important crop wheat (Triticum aestivum L.). In phytopathogenic fungi, several M36 metalloproteases have been implicated in virulence, but pathogenesis roles of M35 family metalloproteases are largely unknown. Here, we identified four M35 family metalloproteases from R. cerealis genome, designated RcMEP2-RcMEP5, measured their transcriptional profiles, and investigated RcMEP2 function. RcMEP2-RcMEP5 are predicted as secreted metalloproteases since each protein sequence contains a signal peptide and an M35 domain that includes two characteristic motifs HEXXE and GTXDXXYG. Transcription levels of RcMEP2-RcMEP5 markedly elevated during the fungus infection to wheat, among which RcMEP2 expressed with the highest level. Functional dissection indicated that RcMEP2 and its M35 domain could trigger H2O2 rapidly-excessive accumulation, induce cell death, and inhibit expression of host chitinases. This consequently enhanced the susceptibility of wheat to R. cerealis and the predicated signal peptide of RcMEP2 functions required for secretion and cell death-induction. These results demonstrate that RcMEP2 is a virulence factor and that its M35 domain and signal peptide are necessary for the virulence role of RcMEP2. This study facilitates a better understanding of the pathogenesis mechanism of metalloproteases in phytopathogens including R. cerealis.Exposure to chemical substances that can produce endocrine disrupting effects represents one of the most critical public health threats nowadays. In line with the regulatory framework implemented within the European Union (EU) to reduce the levels of endocrine disruptors (EDs) for consumers, new and effective methods for ED testing are needed. The OBERON project will build an integrated testing strategy (ITS) to detect ED-related metabolic disorders by developing, improving and validating a battery of test systems. It will be based on the concept of an integrated approach for testing and assessment (IATA). OBERON will combine (1) experimental methods (in vitro, e.g., using 2D and 3D human-derived cells and tissues, and in vivo, i.e., using zebrafish at different stages), (2) high throughput omics technologies, (3) epidemiology and human biomonitoring studies and (4) advanced computational models (in silico and systems biology) on functional endpoints related to metabolism. Such interdisciplinary framework will help in deciphering EDs based on a mechanistic understanding of toxicity by providing and making available more effective alternative test methods relevant for human health that are in line with regulatory needs.