-
Duke Holt posted an update 6 months, 1 week ago
These activities may negatively impact river ecosystems and consequently human health.Water use efficiency (WUE) is an environmental factor to account for the metabolism of terrestrial ecosystems using various climate systems and vegetation types. It is estimated by the ratio of gross primary productivity (GPP) to evapotranspiration (ET), the largest carbon and water fluxes with respect to plant respiration. In this study, the WUE was calculated using GPP and ET from the community land model version 4.0 (CLM4.0), inclusive of the prognostic carbon-nitrogen model in the community earth system model (CESM). The estimated WUE in East Asia was analyzed for climate zones, land cover types, and water- and energy-limited zones, with aridity index (AI). Spatial variations from 2001 to 2015 in annual WUE gradually increased as latitude decreased, though small year-to-year differences appeared between monthly GPP and ET. Monthly WUE was lower in summer than fall because the water loss rate in summer was higher than the carbon assimilation increase. The WUE under arid conditions (AI less then 0.5) was lower than under humid conditions. The GPP, ET, and WUE were higher in the forest, savannas, cropland, and permanent wetland with dense vegetation or abundant water resources than in other land cover types. Selleckchem Ginkgolic The WUE was lower in water-limited zones than in energy-limited zones due to the low amount of water to use for the physical processes of GPP and ET. Based on this study, we identified general spatial and temporal variations of carbon fluxes in East Asia with various climate zones and land cover types.Analysis of organic plastic additives (OPAs) associated to plastic polymers is growing. The current review outlines the characteristics and the development of (multi-step) pyrolysis coupled with a gas chromatography mass spectrometer (Py-GC/MS) for the identification and semi-quantification of OPAs. Compared to traditional methods, Py-GC/MS offers advantages like suppressing extensive steps of preparation, limiting contamination due to solvents and the possibility to analyse minute particles. Its key advantage is the successive analysis of OPAs and the polymeric matrix of the same sample. Based on the studied articles, numerous methods have been described allowing identification and, in some case, semi-quantification of OPAs. There is nevertheless no gold standard method, especially given the huge diversity of OPAs and the risks of interferences with polymers or other additives, but, among other parameters, a consensus temperature seems to arise from studies. More broadly, this review also explores many aspects on the sample preparation like weight and size of particles and calibration strategies. After studying the various works, some development prospects emerge and it appears that methodological developments should focus on better characterizing the limits of the methods in order to consider which OPAs can be quantified and in which polymers this is feasible.Relative agronomic efficiency (RAE) of phosphorus (P) in nutrient-rich residues with different chemical characteristics must be known in order to optimize their use as fertilizers, to avoid underfertilization of crops or eutrophication of surface waters due to overfertilization. In this study, we determined the chemical characteristics and RAE of manures (cattle, pig, fox) and sewage sludges subjected to different treatments (anaerobic digestion, composting, lime stabilization, thermal hydrolyzation, pyrolyzation, hydrothermal carbonization (HTC)) by growing barley (Hordeum vulgare, var. Elmeri) to maturity in three independent growth trials. All manures had high RAE (up to 189% in pig slurry), while RAE was only 6-17% for digested and composted sewage sludges when precipitation with Fe used for P removal from wastewater. Pyrolyzation and HTC further depressed RAE to 1-6%. Alternative wastewater treatment processes are therefore needed to increase P recycling potential. For cattle and pig manures and anaerobically digested or composted sewage sludges, molar ratio of (Fe + Al)/P, varying from 0.08 to 2.69, was the best predictor of RAE (R2 = 0.99), with negative correlations with grain yield. Sources in which calcium was more influential for P solubility (fox manure and lime-stabilized sewage sludge) and pyrolyzed and HTC-treated residues did not follow this trend. Conventional extraction methods (2% formic acid, 2% citric acid, neutral ammonium citrate, water and 0.5 M NaHCO3) either underestimated or overestimated RAE of P-rich organic residues, depending on their chemical characteristics.Fine particulate matter (PM2.5) in the atmosphere is of high priority for air quality management efforts to address adverse health effects in human. We believe that emission control policies, which are traditionally guided by source contributions to PM mass, should also consider source contributions to PM health effects or toxicity. In this study, we estimated source contributions to the toxic potentials of organic aerosols (OA) as measured by a series of chemical and in-vitro biological assays and chemical mass balance model. We selected secondary organic aerosols (SOA), vehicles, biomass open burning, and cooking as possible important OA sources. Fine particulate matter samples from these sources and parallel atmospheric samples from diverse locations and seasons in East Asia were collected for the study. The source and atmospheric samples were analyzed for chemical compositions and toxic potentials, i.e. oxidative potential, inflammatory potential, aryl hydrocarbon receptor (AhR) agonist activity, and DNA-damage, were measured. The toxic potentials per organic carbon (OC) differed greatly among source and ambient particulate samples. The source contributions to oxidative and inflammatory potentials were dominated by naphthalene-derived SOA (NapSOA), followed by open burning and vehicle exhaust. The AhR activity was dominated by open burning, followed by vehicle exhaust and NapSOA. The DNA damage was dominated by vehicle exhaust, followed by open burning. Cooking and biogenic SOA had smaller contributions to all the toxic potentials. Regarding atmospheric OA, urban and roadside samples showed stronger toxic potentials per OC. The toxic potentials of remote samples in summer were consistently very weak, suggesting that atmospheric aging over a long time decreased the toxicity. The toxic potentials of the samples from the forest and the experimentally generated biogenic SOA were low, suggesting that toxicity of biogenic primary and secondary particles is relatively low.