-
Hawley Faber posted an update 6 months ago
Epidemiological and virological studies have revealed that SARS-CoV-2 variants of concern (VOCs) are emerging globally, including in Europe. The aim of this study was to evaluate the spread of B.1.1.7-lineage SARS-CoV-2 in southern Italy from December 2020-March 2021 through the detection of the S gene target failure (SGTF), which could be considered a robust proxy of VOC B.1.1.7. SGTF was assessed on 3075 samples from week 52/2020 to week 10/2021. A subset of positive samples identified in the Apulia region during the study period was subjected to whole-genome sequencing (WGS). A descriptive and statistical analysis of the demographic and clinical characteristics of cases according to SGTF status was performed. Overall, 20.2% of samples showed SGTF; 155 strains were confirmed as VOC 202012/01 by WGS. The proportion of SGTF-positive samples rapidly increased over time, reaching 69.2% in week 10/2021. SGTF-positive cases were more likely to be symptomatic and to result in hospitalization (p less then 0.0001). Despite the implementation of large-scale non-pharmaceutical interventions (NPIs), such as the closure of schools and local lockdowns, a rapid spread of VOC 202012/01 was observed in southern Italy. Strengthened NPIs and rapid vaccine deployment, first among priority groups and then among the general population, are crucial both to contain the spread of VOC 202012/01 and to flatten the curve of the third wave.Au-Fe3O4 nanoheterodimers (NHD) were functionalized with the natural and synthetic anticancer drugs caffeic acid (CA), quercetin (Q) and 5-fluorocytidine (5FC). Their X-radiation dose-enhancing potential and chemotherapeutic efficacy for bimodal cancer therapy were investigated by designing multicellular tumor spheroids (MCTS) to in vitro avascular tumor models. MCTS were grown from the breast cancer cell lines MCF-7, MDA-MB-231, and MCF-10A. The MCF-7, MDA-MB-231 and MCF-10A MCTS were incubated with NHD-CA, NHD-Q, or NHD-5FC and then exposed to fractionated X-radiation comprising either a single 10 Gy dose, 2 daily single 5 Gy doses or 5 daily single 2 Gy doses. The NHD-CA, NHD-Q, and NHD-5FC affected the growth of X-ray irradiated and non-irradiated MCTS in a different manner. click here The impact of the NHDs on the glycolytic metabolism due to oxygen deprivation inside MCTS was assessed by measuring lactate secretion and glucose uptake by the MCTS. The NHD-CA and NHD-Q were found to act as X-radiation dose agents in MCF-7 MCTS and MDA-MB-231 MCTS and served as radioprotector in MCF-10A MCTS. X-ray triggered release of CA and Q inhibited lactate secretion and thereupon disturbed glycolytic reprogramming, whereas 5FC exerted their cytotoxic effects on both, healthy and tumor cells, after their release into the cytosol.Laser doping of silicon with the help of precursors is well established in photovoltaics. Upon illumination with the constant or pulsed laser beam, the silicon melts and doping atoms from the doping precursor diffuse into the melted silicon. With the proper laser parameters, after resolidification, the silicon is doped without any lattice defects. Depending on laser energy and on the kind of precursor, the precursor either melts or evaporates during the laser process. For high enough laser energies, even parts of the silicon’s surface evaporate. Here, we present a unified model and simulation program, which considers all these cases. We exemplify our model with experiments and simulations of laser doping from a boron oxide precursor layer. In contrast to previous models, we are able to predict not only the width and depth of the patterns on the deformed silicon surface but also the doping profiles over a wide range of laser energies. In addition, we also show that the diffusion of the boron atoms in the molten Si is boosted by a thermally induced convection in the silicon melt the Gaussian intensity distribution of the laser beam increases the temperature-gradient-induced surface tension gradient, causing the molten Si to circulate by Marangoni convection. Laser pulse energy densities above H > 2.8 J/cm2 lead not only to evaporation of the precursor, but also to a partial evaporation of the molten silicon. Without considering the evaporation of Si, it is not possible to correctly predict the doping profiles for high laser energies. About 50% of the evaporated materials recondense and resolidify on the wafer surface. The recondensed material from each laser pulse forms a dopant source for the subsequent laser pulses.The aim of this study was to determine the effect of 30 min bloom time and the type of muscle on pH and color parameters together with the possibility of estimating these measurements. The research material consisted of 270 samples from 6 muscle types LD-Longissimusdorsi, LL-Longissimus lumborum, IL-Iliacus, SEM-Semimembranosus, CT-Cutaneous trunci, LTD-Latissimus dorsi. Measurements included pH and color of fresh pork at 0 min, and after 30 min bloom time. Bloom time influenced all analyzed parameters, although to a varying effect, depending on the muscle type. The lowest pH values were noted for dorsal-located muscles (LD, LL), then in the ham area (IL, SEM), and the highest values of the location on the side surface of the carcass (CT, LTD). The large increase in the proportion of L* and a* was observed for CT muscle (20-30%, the highest of all observed) and LTD (20-25%); for LD and LL the largest growth changes were observed for parameters b* (15-20%) and H* (20-30%). The lowest number of strong correlations was noted for LD and CT muscles, and the largest for SEM. A very good fit (R2 > 0.90) of regression equations was achieved in 7 cases. The presented results are an important contribution to the rapid and precise instrumental evaluation of pH and color.The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations (i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine.